(2014?唐山三模)在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1
(2014?唐山三模)在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1A⊥A1C;(2)若A1A=A...
(2014?唐山三模)在斜三棱柱ABC-A1B1C1中,平面A1ACC1⊥平面ABC,AC⊥BC,A1B⊥C1C,AC=BC.(1)求证A1A⊥A1C;(2)若A1A=A1C,求二面角B-A1C-B1的余弦值.
展开
卿努运1514
推荐于2018-02-23
·
TA获得超过139个赞
关注
(1)∵平面A
1ACC
1⊥平面ABC,AC⊥BC,
∴BC⊥平面A
1ACC
1,
∴A
1A⊥BC,
∵A
1B⊥C
1C,A
1A∥CC
1∴A
1A⊥A
1B,
∴A
1A⊥平面A
1BC,
∴A
1A⊥A
1C;
(Ⅱ)建立如图所示的坐标系C-xyz.

设AC=BC=2,
∵A
1A=A
1C,
则A(2,0,0),B(0,2,0),A
1(1,0,1),C(0,0,0).
=(0,2,0),
=(1,0,1),
=
=(-2,2,0).
设
=(a,b,c)为面BA
1C的一个法向量,则
?
=
?
=0,
则
取a=1,
=(1,0,-1).
同理,面A
1CB
1的一个法向量为
=(1,1,-1).
∴cos<
,>=
=
,
收起
为你推荐: