求泰勒公式证明过程要全的

只有一页
2011-08-10 · TA获得超过1083个赞
知道小有建树答主
回答量:232
采纳率:0%
帮助的人:105万
展开全部
泰勒公式:
f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)

泰勒中值定理:
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:
f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn
其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。)

证明:
我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确)

于是我们需要一个能够足够精确的且能估计出误差的多项式:
P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。

设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),
于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。

至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n.

接下来就要求误差的具体表达式了:
设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。

根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n-0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间)

连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。

综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。
arongustc
科技发烧友

2011-08-10 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.3万
采纳率:66%
帮助的人:5875万
展开全部
要全的还不如去看书,然后看不懂的来问。让人家大面积抄书也太不厚道了

基本思想是:一个函数如果无穷次可导,且它有一个多项式形式的等价形式,则两者任意阶导数完全相等。你一层一层求导,就得到各个系数了,就是taylor公式,求导这么简单,不需要别人写吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
诗唯相
2011-08-10
知道答主
回答量:17
采纳率:0%
帮助的人:13.5万
展开全部
书上的表达方式有很多同学不能理解。
要证明式子 f(x)= Pn(x) + [f<n+1>(ξ)*(x-x0)^(n+1)]/[(n+1)!],
只要证明 f(x)- Pn(x) = [f<n+1>(ξ)*(x-x0)^(n+1)]/[(n+1)!],
现在我们引入记号 Rn(x) = f(x)- Pn(x)
这样只要证明 Rn(x) = [f<n+1>(ξ)*(x-x0)^(n+1)]/[(n+1)!],
从而只要证 Rn(x) / [(x-x0)^(n+1)]= [f<n+1>(ξ)] / [(n+1)!],
后面就是对左边两个函数应用Cauchy中值定理证明了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zahngzhyao1
2011-08-11
知道答主
回答量:25
采纳率:0%
帮助的人:9.7万
展开全部
你去抄书吧,估计没有四页也有三页
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式