arctanx的不定积分怎么求
用分部积分解决:
∫ arctanx dx
=xarctanx-∫ x d(arctanx)
=xarctanx-∫ x /(1+x^2) dx
=xarctanx-(1/2) ∫ 1/(1+x^2) d(1+x^2)
=xarctanx-(1/2)ln(1+x^2)+C
求函数积分的方法:
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个 上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
结果为:xarctanx - (1/2)ln(1+x²) + C
解题过程如下:
∫arctanxdx
= xarctanx - ∫x d(arctanx)
= xarctanx - ∫ x/(1+x²)dx
= xarctanx - (1/2)∫1/(1+x²) d(1+x²)
= xarctanx - (1/2)ln(1+x²) + C
扩展资料
求函数积分的方法:
设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C。
其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分。
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
详细一点,多谢
∫arctanx dx
=xarctanx -∫x*darctanx
=xarctanx -∫x /(1+x^2)dx
=xarctanx -1/2∫ 1/(1+x^2) d(1+x^2)
=xarctanx - ln(1+x^2) /2 +C
分部积分法:∫f(x)dg(x)=f(x)g(x)-∫g(x)df(x)