提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另

提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE分析问题:学生甲:如图... 提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由. 展开
 我来答
血刺节奏yZ賾
推荐于2016-12-01 · TA获得超过219个赞
知道答主
回答量:130
采纳率:100%
帮助的人:65.7万
展开全部
证明:如图1,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBM=∠PEN,
在△PBM和△PEN中
∠PMB=∠PNE
∠PBM=∠PEN
PM=PN

∴△PBM≌△PEN(AAS),
∴PB=PE;

如图2,连结PD,
∵四边形ABCD为正方形,
∴CB=CD,CA平分∠BCD,
∴∠BCP=∠DCP,
在△CBP和△CDP中
CB=CD
∠BCP=∠DCP
CP=CP

∴△CBP≌△CDP(SAS),
∴PB=PD,∠CBP=∠CDP,
∵∠BPE=90°,∠BCD=90°,
∴∠PBC+∠CEP=180°,
而∠CEP+∠PEN=180°,
∴∠PBC=∠PED,
∴∠PED=∠PDE,
∴PD=PE,
∴PB=PD;

如图3,PB=PE还成立.
理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,
∵四边形ABCD为正方形,
∴∠BCD=90°,AC平分∠BCD,
∵PM⊥BC,PN⊥CD,
∴四边PMCN为矩形,PM=PN,
∴∠MPN=90°,
∵∠BPE=90°,∠BCD=90°,
∴∠BPM+∠MPE=90°,
而∠MEP+∠EPN=90°,
∴∠BPM=∠EPN,
在△PBM和△PEN中
∠PMB=∠PNE
∠BPM=∠EPN
PM=PN

∴△PBM≌△PEN(AAS),
∴PB=PE.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式