设数列{an}的前n项和为Sn,已知Sn=2an+2,a1=-2(1)证明数列{an}是等比数列(2)数列{bn}满足b1=1,bn+1
设数列{an}的前n项和为Sn,已知Sn=2an+2,a1=-2(1)证明数列{an}是等比数列(2)数列{bn}满足b1=1,bn+1=bn+13an,求数列{bn}的...
设数列{an}的前n项和为Sn,已知Sn=2an+2,a1=-2(1)证明数列{an}是等比数列(2)数列{bn}满足b1=1,bn+1=bn+13an,求数列{bn}的通项公式(3)数列{cn}满足cn=log2(5-3bn),求数列{cn?an}的前n项和Tn.
展开
展开全部
(1)Sn=2an+2,Sn-1=2an-1+2,(n≥2),两式相减并整理得an=2an-1,(n≥2),
由a1=-2≠0,所以数列{an}是等比数列
(2)由(1)得知,数列{an}公比为2,其通项公式为an=-2?2n-1=-2n
所以bn+1-bn=
an=?
?2n,
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=?
?(2n-1+2n-2+…+21)+1
=?
?
+1
=?
?2n+
(3)cn=log2(5-3bn)=n,cn?an=-n?2n
∴Tn=-(1×21+2×22+…n×2n)
∴2Tn=-(1×22+2×23+…n×2n+1)
两式相减得出
-Tn=-(2+22+23+…+2n)+n?2n+1
=-
+n?2n+1
=2-(1-n)?2n+1
Tn=(1-n)?2n+1-2
由a1=-2≠0,所以数列{an}是等比数列
(2)由(1)得知,数列{an}公比为2,其通项公式为an=-2?2n-1=-2n
所以bn+1-bn=
1 |
3 |
1 |
3 |
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=?
1 |
3 |
=?
1 |
3 |
2(1?2n?1) |
1?2 |
=?
1 |
3 |
5 |
3 |
(3)cn=log2(5-3bn)=n,cn?an=-n?2n
∴Tn=-(1×21+2×22+…n×2n)
∴2Tn=-(1×22+2×23+…n×2n+1)
两式相减得出
-Tn=-(2+22+23+…+2n)+n?2n+1
=-
2(1?2n) |
1?2 |
=2-(1-n)?2n+1
Tn=(1-n)?2n+1-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询