1个回答
展开全部
f(x) = 2[cos(x/2)]^2 = cosx + 1
g(x) = [sin(x/2) + cos(x/2)]^2 = [sin(x/2)]^2 + [cos(x/2)]^2 + 2sin(x/2)*cos(x/2) = 1 + sinx
所以:
f(π/2 - x) = cos(π/2 - x) + 1 = sinx + 1 = g(x)
h(x) = f(x) - g(x)
= (cosx + 1) - (1 + sinx)
= cosx - sinx
=√2 * [(√2 /2)*cosx - (√2 /2)*sinx]
=√2 * [cos(π/4)*cosx - sin(π/4)*sinx]
=√2 * cos(π/4 + x)
因为 π/4 + x ∈[π/4, 5π/4],所以,h(x) ∈[-1, √2 /2]
当 x = 3π/4 时,h(x) = cosπ = -1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询