近世代数 有什么用? 15

不知道学工科的为什么学近世代数。不需要长篇大论。联系具体学科说一说.我想知道在系统仿真,控制方面的应用。... 不知道学工科的为什么学近世代数。
不需要长篇大论。 联系具体学科说一说. 我想知道在系统仿真,控制方面的应用。
展开
 我来答
该问答中所提及的号码未经验证,请注意甄别。
喵喵喵啊sunny
高粉答主

2019-08-09 · 每个回答都超有意思的
知道答主
回答量:82
采纳率:0%
帮助的人:3.8万
展开全部

1、学以致用,将其应用于专业:近世代数课程不但在数学的各个分支有很多应用,而且随着计算机技术的发展,它在通信理论、计算机科学、系统工程等许多领域中也有广泛的应用。所学的东西一定会派上用场。学以致用才是学习的关键所在。

2、理解体系结构:学完近世代数,能理解开篇所讲的"现代数学的重要发展趋势是公理化和结构化",这是成之为一个体系的必然。因此,在我们的研究工作中,如何建模成了非常关键的问题。建立类比的关系,通过已知推导未知,这将在很大程度上将工作形象化,便于尽快地进入预定角色。

扩展资料

由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。

抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。

参考资料来源:百度百科-近世代数 (抽象代数)

匿名用户
2007-07-11
展开全部
抽象代数即近世代数。

代数〔Algebra〕是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。

初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程〔组〕是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性质等问题。

法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数的创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。

抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展。经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位。而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响。泛代数、同调代数、范畴等新领域也被建立和发展起来。

中国数学家在抽象代数学的研究始于30年代。当中已在许多方面取得了有意义和重要的成果,其中尤以曾炯之、华罗庚和周炜良的工作更为显著。

==============================================================

现代数学的基础课程正在更新。50年代数学系的教学计划,以“高等微积分”、“高等代数”、“高等几何”为主体。时至今日,人们认为光靠这“老三高”已不够用了,应该发展“新三高”,即抽象代数、拓扑学和泛函分析。现代数学理论是由这三根支柱撑着的。现在,我们来追寻它们形成和发展的历史足迹,并从这一侧面窥视20世纪数学的特征。

一、抽象代数
抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念。后来凯利对群作了抽象定义(Cayley,1821~1895)。他在1849年的一项工作里提出抽象群的概念,可惜没有引起反向。“过早的抽象落到了聋子的耳朵里”。直到1878年,凯利又写了抽象群的四篇文章才引起注意。1874年,挪威数学家索甫斯·李(Sophus Lie, 1842~1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群。1882年,英国的冯·戴克(von Dyck,1856~1934)把群论的三个主要来源—方程式论,数论和无限变换群—纳入统一的概念之中,并提出“生成元”概念。20世纪初给出了群的抽象公里系统。

群论的研究在20世纪沿着各个不同方向展开。例如,找出给定阶的有限群的全体。群分解为单群、可解群等问题一直被研究着。有限单群的分类问题在20世纪七、八十年代才获得可能是最终的解决。伯恩赛德(Burnside,1852~1927年)曾提出过许多问题和猜想。如1902年问道一个群G是有限生成且每个元素都是有限阶,G是不是有限群?并猜想每一个非交换的单群是偶数阶的。前者至今尚未解决,后者于1963年解决。

舒尔(Schur,1875~1941)于1901年提出有限群表示的问题。群特征标的研究由弗罗贝尼乌斯首先提出。庞加莱对群论抱有特殊的热情,他说:“群论就是那摒弃其内容而化为纯粹形式的整个数学。”这当然是过分夸大了。

抽象代数的另一部分是域论。1910年施泰尼茨(Steinitz,1871~1928)发表《域的代数理论》,成为抽象代数的重要里程碑。他提出素域的概念,定义了特征数为P的域,证明了每个域可由其素域经添加而得。

环论是抽象代数中较晚成熟的。尽管环和理想的构造在19世纪就可以找到,但抽象理论却完全是20世纪的产物。韦德伯恩(Wedderburn,1882~1948)《论超复数》一文中,研究了线形结合代数,这种代数实际上就是环。环和理想的系统理论由诺特给出。她开始工作时,环和理想的许多结果都已经有了,但当她将这些结果给予适当的确切表述时,就得到了抽象理论。诺特把多项式环的理想论包括在一般理想论之中,为代数整数的理想论和代数整函数的理想论建立了共同的基础。诺特对环和理想作了十分深刻的研究。人们认为这一总结性的工作在1926年臻于完成,因此,可以认为抽象代数形成的时间为1926年。范德瓦尔登根据诺特和阿廷的讲稿,写成《近世代数学》一书,(1955年第四版时改名为《代数学》),其研究对象从研究代数方程根的计算与分布进到研究数字、文字和更一般元素的代数运算规律和各种代数结构。这就发生了质变。由于抽象代数的一般性,它的方法和结果带有基本的性质,因而渗入到各个不同的数学分支。范德瓦尔登的《代数学》至今仍是学习代数的好书。人们从抽象代数奠基人——诺特、阿廷等人灿烂的成果中吸取到了营养,从那以后,代数研究有了长足进展。

===============================================================
抽象代数
抽象代数又称近世代数,它产生于十九世纪。
抽象代数是研究各种抽象的公理化代数系统的数学学科。由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。
被誉为天才数学家的伽罗瓦(1811-1832)是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。
1843年,哈密顿发明了一种乘法交换律不成立的代数——四元数代数。第二年,Grassmann推演出更有一般性的几类代数。1857年,凯莱设计出另一种不可交换的代数——矩阵代数。他们的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是兼容的),就能研究出许多种代数体系。
1870年,克隆尼克给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;狄德金和克隆尼克创立了环论;1910年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。
有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗根大学,1907年在数学家哥尔丹指导下获博士学位。
诺特的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响。1907-1919年,她主要研究代数不变式及微分不变式。她在博士论文中给出三元四次型的不变式的完全组。还解决了有理函数域的有限有理基的存在问题。对有限群的不变式具有有限基给出一个构造性证明。她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(李群)下不变式问题,给出诺特定理,把对称性、不变性和物理的守恒律联系在一起。
1920~1927年间她主要研究交换代数与「交换算术」。1916年后,她开始由古典代数学向抽象代数学过渡。1920年,她已引入「左模」、「右模」的概念。1921年写出的<<整环的理想理论>>是交换代数发展的里程碑。建立了交换诺特环理论,证明了准素分解定理。1926年发表<<代数数域及代数函数域的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人之一。
1927-1935年,诺特研究非交换代数与「非交换算术」。她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。后又引进交叉积的概念并用决定有限维枷罗瓦扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。
诺特的思想通过她的学生范.德.瓦尔登的名著<<近世代数学>>得到广泛的传播。她的主要论文收在<<诺特全集>>(1982)中。
1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论。
到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子。这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
乀柠檬最萌
推荐于2017-09-06 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4550
采纳率:95%
帮助的人:458万
展开全部
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程组是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性质等问题。法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式