如图所示,在平行四边形ABCD中,M,N分别在AD,BC上,AN和BM交于点E,CM和DN交于点F,连结EF.(1)当M,
如图所示,在平行四边形ABCD中,M,N分别在AD,BC上,AN和BM交于点E,CM和DN交于点F,连结EF.(1)当M,N分别为AD,BC的中点时,试判断四边形MENF...
如图所示,在平行四边形ABCD中,M,N分别在AD,BC上,AN和BM交于点E,CM和DN交于点F,连结EF.(1)当M,N分别为AD,BC的中点时,试判断四边形MENF的形状,并说明理由;(2)试探求:①当AM,BN满足什么条件时,一定有EF∥.12AD?并说明理由;②当AM,BN满足什么条件时,一定有四边形MENF为平行四边形?并说明理由.
展开
1个回答
展开全部
解答:(1)解:四边形MENF是平行四边形.
理由如下:在平行四边形ABCD中,AD=BC,
∵M,N分别为AD,BC的中点,
∴AM=
AD,CN=
BC,
∴AM=CN,
又∵AD∥BC,
∴四边形ANCM是平行四边形,
∴AN∥CM,
同理可得BM∥DN,
∴四边形MENF是平行四边形;
(2)解:①当AM=BN时,一定有EF
AD.
理由如下:∵AM=BM,
∴DM=NC,
在△AEM和△NEB中
∵
,
∴△AEM≌△NEB(ASA),
∴DF=NF,
同理可得出:ME=BE,
∴EF是△AND的中位线,
∴EF
AD;
②当AM+BN=AD时,四边形MENF为平行四边形.
理由如下:在平行四边形ABCD中,AD=BC,
∵AM+BN=AD,BN+CN=BC,
∴AM=CN,
又∵AD∥BC,
∴四边形ANCM是平行四边形,
∴AN∥CM,
同理可得BM∥DN,
∴四边形MENF是平行四边形.
理由如下:在平行四边形ABCD中,AD=BC,
∵M,N分别为AD,BC的中点,
∴AM=
1 |
2 |
1 |
2 |
∴AM=CN,
又∵AD∥BC,
∴四边形ANCM是平行四边形,
∴AN∥CM,
同理可得BM∥DN,
∴四边形MENF是平行四边形;
(2)解:①当AM=BN时,一定有EF
∥ |
. |
1 |
2 |
理由如下:∵AM=BM,
∴DM=NC,
在△AEM和△NEB中
∵
|
∴△AEM≌△NEB(ASA),
∴DF=NF,
同理可得出:ME=BE,
∴EF是△AND的中位线,
∴EF
∥ |
. |
1 |
2 |
②当AM+BN=AD时,四边形MENF为平行四边形.
理由如下:在平行四边形ABCD中,AD=BC,
∵AM+BN=AD,BN+CN=BC,
∴AM=CN,
又∵AD∥BC,
∴四边形ANCM是平行四边形,
∴AN∥CM,
同理可得BM∥DN,
∴四边形MENF是平行四边形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询