C#灰度图像通过相似度算法找出相似度最高的图片

现有一张图片,通过算法在一堆图片中找出和这张图片相似度最高的图片,最好是源码,简单的demo... 现有一张图片,通过算法在一堆图片中找出和这张图片相似度最高的图片,最好是源码,简单的demo 展开
 我来答
匿名用户
推荐于2016-04-28
展开全部

这种以图搜图可以用感知哈希算法,


第一步 缩小图片尺寸

        将图片缩小到8x8的尺寸, 总共64个像素. 这一步的作用是去除各种图片尺寸和图片比例的差异, 只保留结构、明暗等基本信息.

       

第二步 转为灰度图片

         将缩小后的图片, 转为64级灰度图片.

       

第三步 计算灰度平均值

         计算图片中所有像素的灰度平均值

第四步 比较像素的灰度

        将每个像素的灰度与平均值进行比较, 如果大于或等于平均值记为1, 小于平均值记为0.

第五步 计算哈希值

         将上一步的比较结果, 组合在一起, 就构成了一个64位的二进制整数, 这就是这张图片的指纹.

第六步 对比图片指纹

        得到图片的指纹后, 就可以对比不同的图片的指纹, 计算出64位中有多少位是不一样的. 如果不相同的数据位数不超过5, 就说明两张图片很相似, 如果大于10, 说明它们是两张不同的图片.

具体的c#代码可以看

using System;
using System.IO;
using System.Drawing;
 
namespace SimilarPhoto
{
    class SimilarPhoto
    {
        Image SourceImg;
 
        public SimilarPhoto(string filePath)
        {
            SourceImg = Image.FromFile(filePath);
        }
 
        public SimilarPhoto(Stream stream)
        {
            SourceImg = Image.FromStream(stream);
        }
 
        public String GetHash()
        {
            Image image = ReduceSize();
            Byte[] grayValues = ReduceColor(image);
            Byte average = CalcAverage(grayValues);
            String reslut = ComputeBits(grayValues, average);
            return reslut;
        }
 
        // Step 1 : Reduce size to 8*8
        private Image ReduceSize(int width = 8, int height = 8)
        {
            Image image = SourceImg.GetThumbnailImage(width, height, () => { return false; }, IntPtr.Zero);
            return image;
        }
 
        // Step 2 : Reduce Color
        private Byte[] ReduceColor(Image image)
        {
            Bitmap bitMap = new Bitmap(image);
            Byte[] grayValues = new Byte[image.Width * image.Height];
 
            for(int x = 0; x<image.Width; x++)
                for (int y = 0; y < image.Height; y++)
                {
                    Color color = bitMap.GetPixel(x, y);
                    byte grayValue = (byte)((color.R * 30 + color.G * 59 + color.B * 11) / 100);
                    grayValues[x * image.Width + y] = grayValue;
                }
            return grayValues;
        }
 
        // Step 3 : Average the colors
        private Byte CalcAverage(byte[] values)
        {
            int sum = 0;
            for (int i = 0; i < values.Length; i++)
                sum += (int)values[i];
            return Convert.ToByte(sum / values.Length);
        }
 
        // Step 4 : Compute the bits
        private String ComputeBits(byte[] values, byte averageValue)
        {
            char[] result = new char[values.Length];
            for (int i = 0; i < values.Length; i++)
            {
                if (values[i] < averageValue)
                    result[i] = '0';
                else
                    result[i] = '1';
            }
            return new String(result);
        }
 
        // Compare hash
        public static Int32 CalcSimilarDegree(string a, string b)
        {
            if (a.Length != b.Length)
                throw new ArgumentException();
            int count = 0;
            for (int i = 0; i < a.Length; i++)
            {
                if (a[i] != b[i])
                    count++;
            }
            return count;
        }
    }
}
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式