想问大家一道高中数学题,希望大家帮帮忙,非常感谢!
若m²-tm-2≤0在m∈[-1,1]上恒成立,求t的范围?还有一个疑问这个提吧有两总方法一。就是利用图像f(m)=m²-tm-2画个图像对照一下有两...
若m²-tm-2≤0在m∈[-1,1]上恒成立,求t的范围?
还有一个疑问 这个提吧有两总方法 一。就是利用图像f(m)=m²-tm-2
画个图像对照一下
有两个个条件就行了
f(1)≤0
f(-1)≤0
带入得到
1-t-2≤0
1+t-2≤0
解之,得-1≤t≤1
【这种方法很好理解】
但第二种方法吧,我就有点不好理解了
是分类讨论
最后的答案
是应该并起来的
就是
综上所述 当m∈[-1,0)时,t≤1
当m=0时,t∈R
当m∈(0,1]时,t≥-1
为什么 这两种方法的答案 会不一样呢? 希望你们帮帮我,真心的感谢你们! 展开
还有一个疑问 这个提吧有两总方法 一。就是利用图像f(m)=m²-tm-2
画个图像对照一下
有两个个条件就行了
f(1)≤0
f(-1)≤0
带入得到
1-t-2≤0
1+t-2≤0
解之,得-1≤t≤1
【这种方法很好理解】
但第二种方法吧,我就有点不好理解了
是分类讨论
最后的答案
是应该并起来的
就是
综上所述 当m∈[-1,0)时,t≤1
当m=0时,t∈R
当m∈(0,1]时,t≥-1
为什么 这两种方法的答案 会不一样呢? 希望你们帮帮我,真心的感谢你们! 展开
3个回答
展开全部
分再加起点就更好了O(∩_∩)O~~
m∈[-1,0)时 m=0时 m∈(0,1]时
t小于等于m-(2/m)恒成立 成立 t≥m-(2/m)恒成立
t≤1 t≥ -1
再综上所述:、、、
m∈[-1,0)时 m=0时 m∈(0,1]时
t小于等于m-(2/m)恒成立 成立 t≥m-(2/m)恒成立
t≤1 t≥ -1
再综上所述:、、、
更多追问追答
追问
恩 大哥 可以写得更详细点吗?我就是这地方有点不懂,今天我们老师讲的是上面那位好心人士写的,就是画图像,我也懂~但对于这种分开求 我还是不太明白,麻烦了~谢谢 在线等
追答
恩,是这样~~
tm≥m²-2
要把m除过去,是要考虑正负的,因为正负影响不等号的方向,还有就是是否为0
展开全部
f(m)=m²-tm-2
画个图像对照一下
有两个个条件就行了
f(1)≤0
f(-1)≤0
带入得到
1-t-2≤0
1+t-2≤0
解之,得-1≤t≤1
画个图像对照一下
有两个个条件就行了
f(1)≤0
f(-1)≤0
带入得到
1-t-2≤0
1+t-2≤0
解之,得-1≤t≤1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先把不等式左边配成平方形式 然后往下做 我算了下 -2<=t<=-1 不一定对 仅供参考- -|||
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询