已知2sina^2-cosa^2+sinacosa-6sina+3coa=0 求(2cosa^2+2sinacosa)/(1+tana)
1个回答
展开全部
解答:2sina^2-cosa^2+sinacosa-6sina+3coa=0
2sina^2-cosa^2+2sinacosa-sinacosa-6sina+3coa=0
2sina^2+2sinacosa-6sina-cosa^2-sinacosa+3coa=0
2sina(sina+cosa-3)-cosa(sina+cosa-3)=0
(2sina-cosa)(sina+cosa-3)=0
所以2sina-cosa=0,即cosa=2sina
∴cosa^2+sina^2=5sina^2=1
sina^2=1/5
cosa^2=4/5
从而(2cosa^2+2sinacosa)/(1+tana)
=2cosa(cosa+sina)/[(sina+cosa)/cosa]
=2cosa^2=8/5
2sina^2-cosa^2+2sinacosa-sinacosa-6sina+3coa=0
2sina^2+2sinacosa-6sina-cosa^2-sinacosa+3coa=0
2sina(sina+cosa-3)-cosa(sina+cosa-3)=0
(2sina-cosa)(sina+cosa-3)=0
所以2sina-cosa=0,即cosa=2sina
∴cosa^2+sina^2=5sina^2=1
sina^2=1/5
cosa^2=4/5
从而(2cosa^2+2sinacosa)/(1+tana)
=2cosa(cosa+sina)/[(sina+cosa)/cosa]
=2cosa^2=8/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询