请问图中这个式子可以怎样拆分母。给个过程,谢谢
2个回答
展开全部
本题是有理函数的不定积分,用待定系数法解之。令
A/(x+1)+B/[(x+1)^2]+C/(x-1)=(x^2+1)/[((x+1)^2)(x-1)],则
A(x^-1)+B(x-1)+C[(x+1)^2]=x^2+1
从而A+C=1
B+2C=0
-A-B+C=1
解得:A=1/2,B=-1,C=1/2
因此∫(x^2+1)/[((x+1)^2)(x-1)]dx
=(1/2)∫dx/(x+1)-∫dx/[(x+1)^2]+(1/2)∫dx/(x-1)
=(1/2)ln|x+1|+1/(x+1)+(1/2)ln|x-1|+C
=(1/2)ln|x^2-1|+1/(x+1)+C
A/(x+1)+B/[(x+1)^2]+C/(x-1)=(x^2+1)/[((x+1)^2)(x-1)],则
A(x^-1)+B(x-1)+C[(x+1)^2]=x^2+1
从而A+C=1
B+2C=0
-A-B+C=1
解得:A=1/2,B=-1,C=1/2
因此∫(x^2+1)/[((x+1)^2)(x-1)]dx
=(1/2)∫dx/(x+1)-∫dx/[(x+1)^2]+(1/2)∫dx/(x-1)
=(1/2)ln|x+1|+1/(x+1)+(1/2)ln|x-1|+C
=(1/2)ln|x^2-1|+1/(x+1)+C
更多追问追答
追问
请问为什么会是B/[(x➕1)^2]呢,这一步是怎么得出来的呢
追答
打错了,,多弄了个2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
so easy
更多追问追答
追问
怎么做,xie xie
追答
看着
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询