就是找f(x)在所取x值之前一共积分了多少,
分段函数就分段考虑,注意累积即可
F(x)=0(x<=-1)
=∫(-1~x) 1+x dx = x+x²/2+1/2 (-1<x<=0)
=∫(-1~0) 1+x dx+∫(0~x) 1-x dx=1/2+x-x²/2(0<x<1)
=1(x>=1)
由于是
连续函数,只要满足右连续和已知条件给的小于或大于,
等于号放哪边都无所谓
2) P(-2<x<1/4)
=F(1/4)-F(-2)
=(1/2+1/4-1/32)-0
=(16+8-1)/32
=23/32