求微分方程的特解,要详细步骤
1个回答
展开全部
特征方程为r²-8r+16=0, 即(r-4)²=0
得r=4为二重根,即齐次方程通解y1=(C1+C2x)e^(4x)
设特解y*=ax+b+cx²e^(4x)
则y*'=a+c(4x²+2x)e^(4x)
y*"=c(16x²+16x+2)e^(4x)
代入方程得:
-8a+16ax+16b+2ce^(4x)=x+e^(4x)
对比系数得:16a=1, -8a+16b=0, 2c=1
得a=1/16, b=1/32, c=1/2
所以方程的通解为y=y1+y*=(C1+C2x)e^(4x)+x/16+1/32+1/2x²e^(4x)
得r=4为二重根,即齐次方程通解y1=(C1+C2x)e^(4x)
设特解y*=ax+b+cx²e^(4x)
则y*'=a+c(4x²+2x)e^(4x)
y*"=c(16x²+16x+2)e^(4x)
代入方程得:
-8a+16ax+16b+2ce^(4x)=x+e^(4x)
对比系数得:16a=1, -8a+16b=0, 2c=1
得a=1/16, b=1/32, c=1/2
所以方程的通解为y=y1+y*=(C1+C2x)e^(4x)+x/16+1/32+1/2x²e^(4x)
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询