已知圆x²;+y²+x-6y+m=0和直线x+2y-3=0相交于A,B两点,且OA,⊥OB(O为坐标原点)求M的值
2个回答
展开全部
由题知,
已知圆x²+y²+x-6y+m=0和直线x+2y-3=0相交于A,B两点,
令两式联立得
x²+y²+x-6y+m=0
x+2y-3=0
即
1.25x²+2.5x+m-6.75=0
设A(x1,y1),B(x2,y2)
所以,
x1+x2 = -2
x1*x2 = 0.8m-5.4
因为OA⊥OB
所以,
x1x2+y1y2
=x1x2+(3-x1)(3-x2)/4
=1.25x1x2-0.75(x1+x2)+2.25
=1.25(0.8m-5.4)-0.75(-2)+2.25
=0
解得
m=3
希望采纳~~~
已知圆x²+y²+x-6y+m=0和直线x+2y-3=0相交于A,B两点,
令两式联立得
x²+y²+x-6y+m=0
x+2y-3=0
即
1.25x²+2.5x+m-6.75=0
设A(x1,y1),B(x2,y2)
所以,
x1+x2 = -2
x1*x2 = 0.8m-5.4
因为OA⊥OB
所以,
x1x2+y1y2
=x1x2+(3-x1)(3-x2)/4
=1.25x1x2-0.75(x1+x2)+2.25
=1.25(0.8m-5.4)-0.75(-2)+2.25
=0
解得
m=3
希望采纳~~~
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询