1个回答
展开全部
(1)π/3<α<π/2. ∴α-π/3∈(0,π/6).
∵cos(α-π/3)=12/13 .∴sin(α-π/3)=5/13.
∴cosα=cos[(α-π/3)+π/3]=cos(α-π/3)cosπ/3-sin(α-π/3)sinπ/3=(12-5√3)/26.
(2) 1=(sinα+sinβ)²+(cosα+cosβ)²=(sin²α+sin²β+2sinαsinβ)+(cos²α+cos²β+2cosαcosβ)
=sin²α+cos²+sin²β+cos²β+2(sinαsinβ+cosαcosβ)=2+2cos(α-β).
∴cos(α-β)= -1/2.
∵cos(α-π/3)=12/13 .∴sin(α-π/3)=5/13.
∴cosα=cos[(α-π/3)+π/3]=cos(α-π/3)cosπ/3-sin(α-π/3)sinπ/3=(12-5√3)/26.
(2) 1=(sinα+sinβ)²+(cosα+cosβ)²=(sin²α+sin²β+2sinαsinβ)+(cos²α+cos²β+2cosαcosβ)
=sin²α+cos²+sin²β+cos²β+2(sinαsinβ+cosαcosβ)=2+2cos(α-β).
∴cos(α-β)= -1/2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询