已知A(-2,-2)B(-2,6)C(4,-2),P点在圆x2+y2=4上运动,求PA2+PB2+PC2的最大值和最小值
展开全部
(PA)^2=(x+2)^2+(y+2)^2=x^2+y^2+4x+4y+8, 由于P在圆x^2+y^2=4上
所以,(PA)^2=4x+4y+12 同理,
(PB)^2=(x+2)^2+(y-6)^2=x^2+y^2+4x-12y+40=4x-12y+44
(PC)^2=(x-4)^2+(y+2)^2=-8x+4y+24
(PA)^2+(PB)^2+(PC)^2
=- 4y+80
因为 -2≤y≤2
所以,
(PA)^2+(PB)^2+(PC)^2 的最大值是88 .最小值是 72
所以,(PA)^2=4x+4y+12 同理,
(PB)^2=(x+2)^2+(y-6)^2=x^2+y^2+4x-12y+40=4x-12y+44
(PC)^2=(x-4)^2+(y+2)^2=-8x+4y+24
(PA)^2+(PB)^2+(PC)^2
=- 4y+80
因为 -2≤y≤2
所以,
(PA)^2+(PB)^2+(PC)^2 的最大值是88 .最小值是 72
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询