高中数学椭圆问题
如图,已知F1,F2是椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的左、右焦点,点P在在椭圆C上,线段PF2与圆(x^2)+(y^2)=(b^...
如图,已知F1,F2是椭圆C:(x^2)/(a^2)+(y^2)/(b^2)=1(a>b>0)的左、右焦点,点P在在椭圆C上,线段PF2与圆(x^2)+(y^2)=(b^2)相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为_______。
答案是√5/3
要详细过程,回答好的加倍酬谢 展开
答案是√5/3
要详细过程,回答好的加倍酬谢 展开
2个回答
展开全部
连接F1和P点,根据椭圆定义,PF1+PF2=2a
Q与O都是三角形两边的中点,中位线有吧,切线有吧,
三角形的角P就是直角,F2Q=根号下(c平方-a平方) PF2=2b
得第一个关系式 根号下(c平方-a平方) + b =a
再有第二个关系式 c平方+b平方=a平方
用c平方=a平方-b平方代入第一个关系式,移项,平方,化掉根号,得出 b/a =2/3
e=c/a= 根号下(1- b平方/a平方)=根号下(1- 4/9)=根号下(5/9)=答案√5/3
我的解法不复杂啊,很清楚的,你对照图形理解就好了
Q与O都是三角形两边的中点,中位线有吧,切线有吧,
三角形的角P就是直角,F2Q=根号下(c平方-a平方) PF2=2b
得第一个关系式 根号下(c平方-a平方) + b =a
再有第二个关系式 c平方+b平方=a平方
用c平方=a平方-b平方代入第一个关系式,移项,平方,化掉根号,得出 b/a =2/3
e=c/a= 根号下(1- b平方/a平方)=根号下(1- 4/9)=根号下(5/9)=答案√5/3
我的解法不复杂啊,很清楚的,你对照图形理解就好了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |