这个积分怎么求????
1个回答
展开全部
设
r=根号(x²+y²)
sint=y/r
y=rsint
x=rcost
找Jacobian,把dxdy转换成drdt
|dx/dr dy/dr| =|cost sint| =|rcostcost+rsintsint|=|r|=r
|dx/dt dy/dt | |-rsint rcost|
∫∫∫ x²+y² dxdydz
=∫∫∫ r²|jacobian| drdt dz
=∫(2~8)∫(0~2π)∫(0~根号2z) r²r dr dt dz
=∫(2~8)∫(0~2π){ r^4/4](0~根号2z)}dtdz
=∫(2~8){[4z²t](0~2π)}dz
=8π∫(2~8)z²dz
=8π* {z³/3](2~8)}
=168*8π
=1344π
r=根号(x²+y²)
sint=y/r
y=rsint
x=rcost
找Jacobian,把dxdy转换成drdt
|dx/dr dy/dr| =|cost sint| =|rcostcost+rsintsint|=|r|=r
|dx/dt dy/dt | |-rsint rcost|
∫∫∫ x²+y² dxdydz
=∫∫∫ r²|jacobian| drdt dz
=∫(2~8)∫(0~2π)∫(0~根号2z) r²r dr dt dz
=∫(2~8)∫(0~2π){ r^4/4](0~根号2z)}dtdz
=∫(2~8){[4z²t](0~2π)}dz
=8π∫(2~8)z²dz
=8π* {z³/3](2~8)}
=168*8π
=1344π
更多追问追答
追问
答案是336π
追答
=∫(2~8)∫(0~2π){ r^4/4](0~根号2z)}dtdz
这步忘记除以4了
=∫(2~8){[z²t](0~2π)}dz
=2π∫(2~8)z²dz
=2π* {z³/3](2~8)}
=168*2π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询