关于线性代数非齐次线性方程组的特解问题

图中的特解为什么要令x3x4等于1他的取值决定于什么?... 图中的特解为什么要令x3x4等于1 他的取值决定于什么? 展开
 我来答
熙苒3421
高粉答主

推荐于2019-08-31 · 关注我不会让你失望
知道答主
回答量:112
采纳率:0%
帮助的人:3.7万
展开全部

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。

扩展资料

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

概念

线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。

所谓“线性”,指的就是如下的数学关系:

 

。其中,f叫线性算子或线性映射。所谓“代数”,指的就是用符号代替元素和运算,也就是说:我们不关心上面的x,y是实数还是函数,也不关心f是多项式还是微分,我们统一把他们都抽象成一个记号,或是一类矩阵。合在一起,线性代数研究的就是:满足线性关系

 

参考资料:百度百科 线性代数

教育小百科达人
推荐于2019-09-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。

扩展资料:

线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。

非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。

线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。

·每一个线性空间都有一个基。

·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

·矩阵非奇异(可逆)当且仅当它的行列式不为零。

·矩阵非奇异当且仅当它代表的线性变换是个自同构。

·矩阵半正定当且仅当它的每个特征值大于或等于零。

·矩阵正定当且仅当它的每个特征值都大于零。

·解线性方程组的克拉默法则。

·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

参考资料:百度百科-线性代数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
推荐于2019-09-20 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.4万
展开全部

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。

扩展资料:

线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。

线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数。

非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。

线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。

·每一个线性空间都有一个基。

·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。

·矩阵非奇异(可逆)当且仅当它的行列式不为零。

·矩阵非奇异当且仅当它代表的线性变换是个自同构。

·矩阵半正定当且仅当它的每个特征值大于或等于零。

·矩阵正定当且仅当它的每个特征值都大于零。

·解线性方程组的克拉默法则。

·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。

参考资料:百度百科-线性代数

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
北极雪wsy

2019-12-22 · TA获得超过16.1万个赞
知道大有可为答主
回答量:10.3万
采纳率:74%
帮助的人:9349万
展开全部

图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.

其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.

4 个未知数,2 个方程,任意给出 2 个未知数的值,

算出另 2 个未知数,都可以得到 1 组特解,

只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。


向左转|向右转

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sjh5551
高粉答主

推荐于2017-12-16 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8084万
展开全部
图中求特解,令 x3 = x4 = 1, 只是一种“取值”方法, 得特解 (11, -4, 1, 1)^T.
其实更简单的“取值”方法是 令 x3 = x4 = 0,得特解 (1, 1, 0, 0)^T.
4 个未知数,2 个方程,任意给出 2 个未知数的值,
算出另 2 个未知数,都可以得到 1 组特解,
只不过形式越简单越好,例如取 特解 (1, 1, 0, 0)^T。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式