第1.2题,学霸,求解

 我来答
匿名用户
2015-12-16
展开全部
(网上寻得,请展开观看)
http://www.zybang.com/question/a0c1e3c072600c3b590c72c7a313533d.html
令x = asinθ,dx = acosθdθ
原式= ∫(0→π/2) (acosθ)/(asinθ + acosθ) dθ
= (1/2)∫(0→π/2) 2cosθ/(sinθ + cosθ) dθ
= (1/2)∫(0→π/2) [(sinθ + cosθ) - (sinθ - cosθ)]/(sinθ + cosθ) dθ
= (1/2)∫(0→π/2) dθ - (1/2)∫(0→π/2) (sinθ - cosθ)/(sinθ + cosθ) dθ
= (1/2)(π/2) - (1/2)∫(0→π/2) - d(cosθ + sinθ)/(sinθ + cosθ) dθ
= π/4 + (1/2)ln(sinθ + cosθ) |(0→π/2)
= π/4 + (1/2)[ln(1 + 0) - ln(0 + 1)]
= π/4

-------------------------------------
http://www.zybang.com/question/bf19c34255b20d9cbe69be96394b256c.html

∫[ln(1+x)/(1+x²)]dx=∫[ln(1+tanz)/(1+tan²z)]*sec²zdz (令x=tanz)
=∫ln(1+sinz/cosz)dz
=∫ln[(sinz+cosz)/cosz]dz
=∫[ln(sinz+cosz)-ln(cosz)]dz
=∫ln(sinz+cosz)dz-∫ln(cosz)dz
=∫ln[√2sin(z+π/4)]dz-∫ln(cosz)dz
=∫ln(√2)dz+∫ln[sin(z+π/4)]dz-∫ln(cosz)dz
=(π/4)ln(√2)+∫ln[sin(π/2-y)]d(-y)-∫ln(cosz)dz
(在第二个积分中,令z=π/4-y)
=πln2/8+∫ln(cosy)dy-∫ln(cosz)dz
=πln2/8+∫ln(cosz)dz-∫ln(cosz)dz
(在第一个积分中,令z=y)
=πln2/8
醉里挑灯看剑first
2015-12-16 · TA获得超过141个赞
知道答主
回答量:91
采纳率:100%
帮助的人:20.4万
展开全部
我做不来我这里没有城市的繁华和苍凉和
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式