斯坦纳定理如何证明
展开全部
证明:
设在三角形ABC中,有B、C的角平分线CF、BE交于O
BE是角平分线推出:BC/CE=AB/AE,同理:BC/BD=AC/AD,因为BD=CE,所以等量代换得出:
AB/AE=AC/AD,角A是公共角,所以三角形ACD与ABE相似,所以∠ACD=∠ABE,同理∠BDC=∠BEC,再加上BD=CE,所以三角形BOD全等于三角形OEC,所以OB=OC且∠DBE=∠ECD,OB=OC推出∠OBC=∠OCB,再等量代换得到∠ABC=∠ACB,所以AB=AC
设在三角形ABC中,有B、C的角平分线CF、BE交于O
BE是角平分线推出:BC/CE=AB/AE,同理:BC/BD=AC/AD,因为BD=CE,所以等量代换得出:
AB/AE=AC/AD,角A是公共角,所以三角形ACD与ABE相似,所以∠ACD=∠ABE,同理∠BDC=∠BEC,再加上BD=CE,所以三角形BOD全等于三角形OEC,所以OB=OC且∠DBE=∠ECD,OB=OC推出∠OBC=∠OCB,再等量代换得到∠ABC=∠ACB,所以AB=AC
2011-08-19
展开全部
设在三角形ABC中,有B、C的角平分线CF、BE交于O
BE是角平分线推出:BC/CE=AB/AE,同理:BC/BD=AC/AD,因为BD=CE,所以等量代换得出:
AB/AE=AC/AD,角A是公共角,所以三角形ACD与ABE相似,所以∠ACD=∠ABE,同理∠BDC=∠BEC,再加上BD=CE,所以三角形BOD全等于三角形OEC,所以OB=OC且∠DBE=∠ECD,OB=OC推出∠OBC=∠OCB,再等量代换得到∠ABC=∠ACB,所以AB=AC
BE是角平分线推出:BC/CE=AB/AE,同理:BC/BD=AC/AD,因为BD=CE,所以等量代换得出:
AB/AE=AC/AD,角A是公共角,所以三角形ACD与ABE相似,所以∠ACD=∠ABE,同理∠BDC=∠BEC,再加上BD=CE,所以三角形BOD全等于三角形OEC,所以OB=OC且∠DBE=∠ECD,OB=OC推出∠OBC=∠OCB,再等量代换得到∠ABC=∠ACB,所以AB=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询