中学一元二次方程如何解

8唯她命8
2011-08-13 · TA获得超过1335个赞
知道小有建树答主
回答量:500
采纳率:0%
帮助的人:306万
展开全部
一元二次方程,就是只有一个未知数且未知数最高次数为2的整式方程,其一般形式为ax^2+bx+c=0
在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
一元二次方程有四个特点:
  (1)含有一个未知数;
  (2)且未知数次数最高次数是2;
  (3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为 ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.
  (4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)
一般解法

1.配方法
  (可解全部一元二次方程)
  如:解方程:x^2+2x-3=0
  解:把常数项移项得:x^2+2x=3
  等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
  因式分解得:(x+1)^2=4
  解得:x1=-3,x2=1
  用配方法解一元二次方程小口诀
  二次系数化为一
  常数要往右边移
  一次系数一半方
  两边加上最相当
2.公式法
  (可解全部一元二次方程)
  首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
  1.当Δ=b^2-4ac<0时 x无实数根(初中)
  2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
  3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
  当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
  来求得方程的根
3.因式分解法
  (可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
  因式分解法是通过将方程左边因式分解所得,因式分解的内容在七年级上学期学完。
  如:解方程:x^2+2x+1=0
  解:利用完全平方公式因式分解得:(x+1﹚^2=0
  解得:x1=x2=-1
4.直接开平方法
  (可解部分一元二次方程)
  如:x^2-24=1
  x^2=25
  x=±5
5.代数法
  (可解全部一元二次方程)
  ax^2+bx+c=0
  同时除以a,可变为x^2+bx/a+c/a=0
  设:x=y-b/2
  方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
  再变成:y^2+(b^22*3)/4+c=0X ___y^2-b^2/4+c=0
  y=±√[(b^2*3)/4+c]X ____y=±√[(b^2)/4+c]
如何选择最简单的解法
  1、看是否可以直接开方解
  2.看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法)
  3.使用公式法求解
  4.最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。
例题精讲
  1、直接开平方法:
  直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n
  例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11
  分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。
  (1)解:(3x+1)^2=7
  ∴(3x+1)^2=7
  ∴3x+1=±√7(注意不要丢解)
  ∴x= ...
  ∴原方程的解为x1=...,x2= ...
  (2)解: 9x^2-24x+16=11
  ∴(3x-4)^2=11
  ∴3x-4=±√11
  ∴x= ...
  ∴原方程的解为x1=...,x2= ...
  2.配方法:
  例1 用配方法解方程 3x^2-4x-2=0
  解:将常数项移到方程右边 3x^2-4x=2
  将二次项系数化为1:x^2-x=
  方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2
  配方:(x-)^2=
  直接开平方得:x-=±
  ∴x=
  ∴原方程的解为x1=,x2= .
  3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。
  当Δ=b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根)
  当Δ=b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)
  当Δ=b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个虚数根)(初中理解为无实数根)
  例3.用公式法解方程 2x^2-8x=-5
  解:将方程化为一般形式:2x^2-8x+5=0
  ∴a=2, b=-8,c=5
  b^2-4ac=(-8)2-4×2×5=64-40=24>0
  ∴x= = =
  ∴原方程的解为x1=,x2= .
  4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。
  例4.用因式分解法解下列方程:
  (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0
  (3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学)
  (1)解:(x+3)(x-6)=-8 化简整理得
  x^2-3x-10=0 (方程左边为二次三项式,右边为零)
  (x-5)(x+2)=0 (方程左边分解因式)
  ∴x-5=0或x+2=0 (转化成两个一元一次方程)
  ∴x1=5,x2=-2是原方程的解。
  (2)解:2x^2+3x=0
  x(2x+3)=0 (用提公因式法将方程左边分解因式)
  ∴x=0或2x+3=0 (转化成两个一元一次方程)
  ∴x1=0,x2=-3/2是原方程的解。
  注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
  (3)解:6x2+5x-50=0
  (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
  ∴2x-5=0或3x+10=0
  ∴x1=5/2, x2=-10/3 是原方程的解。
  (4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
  (x-2)(x-2 )=0
  ∴x1=2 ,x2=2是原方程的解
cycySMSM
2011-08-13 · TA获得超过1420个赞
知道小有建树答主
回答量:385
采纳率:100%
帮助的人:422万
展开全部
举例一个方程ax^2+bx+c=0(a≠0)
可用公式法△=b^2-4ac
若△>0 则方程有两个不等实根
若△=0 则方程有两个相等实根
若△<0 则方程无实根
当有实根时,x1=(-b+根号△)/2a或x2=(-b-根号△)/2a
望采纳
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
夜半是明灯J
2011-08-15
知道答主
回答量:55
采纳率:0%
帮助的人:14.3万
展开全部
看书啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
到了临界点
2011-08-24
知道答主
回答量:85
采纳率:0%
帮助的人:30.9万
展开全部
不知
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式