试证;对任意的正整数n,有1/(1*2*3)+1/(2*3*4)+.....+1/n(n+1)(n+2)<1/4

478265087
2011-08-13 · TA获得超过514个赞
知道小有建树答主
回答量:169
采纳率:100%
帮助的人:84.8万
展开全部
1/n(n+1)(n+2)=1/n·[1/(n+1) - 1/(n+2)]=1/n(n+1) - 1/n(n+2) =[1/n-1/(n+1)] - ½[1/n-1-(n+2)]
=½[1/n-2/(n+1)+1/(n+2)].
∴原式=½(1/1-2/2+1/3)+½(1/2-2/3+1/4)+½(1/3-2/4+1/5)+···+½[1/n-2/(n+1)+1/(n+2)]
=½(1/1+1/2+1/3+···+1/n) - 1·[1/2+1/3+1/4+···+1/(n+1)] + ½[1/3+1/4+···+1/(n+2)]
=½[1+1/2+1/(n+1)+1/(n+2)] + 1·[1/3+1/4+···+1/n] - 1·[1/2+1/3+1/4+···+1/(n+1)]
=1/2+1/4 + ½[1/(n+1)+1/(n+2)] - [1/2+1/(n+1)]
=1/4-½[1/(n+1)-1/(n+2)]
<1/4.
百度网友d986a0bdb
2012-09-10
知道答主
回答量:97
采纳率:0%
帮助的人:38.2万
展开全部
x小于1/4吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式