2个回答
展开全部
{an}为等比数列,bn=na1+(n-1)a2+┄┄+2a(n-1)+an,b1=m,b2=3m/2;
(1)b1=a1=m,b2=2a1+a2=3m/2,a2=-m/2,q=-1/2,数列{an}首项为m,公比q=-1/2;
(2)m=1,an=(-1/2)^(n-1),bn=n(-1/2)º+(n-1)(-1/2)+┄┄+2(-1/2)^(n-2)+(-1/2)^(n-1)┄┄①
①式乘以-1/2得:-1/2bn=n(-1/2)+(n-1)(-1/2)²+┄┄+2(-1/2)^(n-1)+(-1/2)^n┄┄②,
②式减①式得:-3/2bn=-n+(-1/2)+(-1/2)²+┄┄+(-1/2)^(n-1)+(-1/2)^n=-n-1/3[1-(-1/2)^n],
bn=2n/3+2[1-(-1/2)^n]/9;
(3)数列{an}Sn=2m[1-(-1/2)^n]/3,当n为奇数时,2m/3<Sn≤m;当你为偶数时,m/2≤Sn<2m/3;则n为任意正整数时,m/2≤Sn≤m;若Sn∈[1,3],m/2=1,m=2,m=3,m∈[2,3]。
(1)b1=a1=m,b2=2a1+a2=3m/2,a2=-m/2,q=-1/2,数列{an}首项为m,公比q=-1/2;
(2)m=1,an=(-1/2)^(n-1),bn=n(-1/2)º+(n-1)(-1/2)+┄┄+2(-1/2)^(n-2)+(-1/2)^(n-1)┄┄①
①式乘以-1/2得:-1/2bn=n(-1/2)+(n-1)(-1/2)²+┄┄+2(-1/2)^(n-1)+(-1/2)^n┄┄②,
②式减①式得:-3/2bn=-n+(-1/2)+(-1/2)²+┄┄+(-1/2)^(n-1)+(-1/2)^n=-n-1/3[1-(-1/2)^n],
bn=2n/3+2[1-(-1/2)^n]/9;
(3)数列{an}Sn=2m[1-(-1/2)^n]/3,当n为奇数时,2m/3<Sn≤m;当你为偶数时,m/2≤Sn<2m/3;则n为任意正整数时,m/2≤Sn≤m;若Sn∈[1,3],m/2=1,m=2,m=3,m∈[2,3]。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询