多项式怎么分解?

20090601001755
2011-08-14 · TA获得超过122个赞
知道答主
回答量:45
采纳率:0%
帮助的人:34.1万
展开全部
多项式因式分解的一般步骤:
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;
分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。”
几道例题
1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.
解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项)
=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)
=[(1+y)+x^2(1-y)]^2-(2x)^2
=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]
=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)
=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求证:对于任何实数x,y,下式的值都不会为33:
x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.
解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)
=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)
=(x+3y)(x^4-5x^2y^2+4y^4)
=(x+3y)(x^2-4y^2)(x^2-y^2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
(分解因式的过程也可以参看右图。)
当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。
3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c^2+a^2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形。
4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。
解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)
=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).

参考资料: http://baike.baidu.com/view/857429.htm#3

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式