二阶导数的几何意义

我想要了解的是一个函数的二阶导数与函数本身的关系... 我想要了解的是
一个函数的二阶导数与函数本身的关系
展开
妄与栀枯88
高粉答主

2019-08-23 · 说的都是干货,快来关注
知道答主
回答量:7
采纳率:85%
帮助的人:3825
展开全部

1、切线斜率变化的速度,表示的是一阶导数的变化率。

2、函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。

二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数yˊ=fˊ(x)仍然是x的函数,则y′′=f′′(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

扩展资料

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。

反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

参考资料来源:百度百科-二阶导数

参考资料来源:百度百科-导数

暴走爱生活55
高能答主

2019-05-21 · 我是生活小达人,乐于助人就是我
暴走爱生活55
采纳数:4157 获赞数:1692567

向TA提问 私信TA
展开全部

1、切线斜率变化的速度,表示的是一阶导数的变化率。

2、函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。

二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

扩展资料:

一、相关性质:

1、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

2、判断函数极大值以及极小值。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

3、函数凹凸性。

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的。

(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

二、函数的凹凸性:

在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。同理可知,如果函数图像在这两点之间的部分总在连接这两点线段的上方,那么这个函数就是凸函数。

直观上看,凸函数就是图象向上突出来的。比如y=x²y=lnx。

凹函数就是图像向下凹进去的,比如常见的y=x²。

如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凸函数的充要条件是f''(x)<=0;f(x)在区间I上是凹函数的充要条件是f''(x)>=0。

参考资料来源:百度百科-二阶导数

参考资料来源:百度百科-函数的凹凸性

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
rchlch
推荐于2017-11-24 · TA获得超过2038个赞
知道小有建树答主
回答量:229
采纳率:0%
帮助的人:0
展开全部
意义如下:
(1)斜线斜率变化的速度
(2)函数的凹凸性。

关于你的补充:
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。
应用:
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友ee29dbc0b
2007-07-13 · TA获得超过9804个赞
知道大有可为答主
回答量:1907
采纳率:80%
帮助的人:1049万
展开全部
凹凸性和拐点。
二阶导数为正,函数在局部为凸函数(但直观上是向下凹陷的,“凸”字可以沿坐标 y 轴自下向上看来理解);
二阶导数为负,函数在局部为凹函数(有人也称上凸,似更直观)。
二阶导数为0,而且函数在该点左右两边二阶导数正负号改变,则称该点为“拐点”,几何直观上就是改变凹凸性的点(切线变化方向改变的点)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
汲珑郏虹影
2019-12-01 · TA获得超过3940个赞
知道大有可为答主
回答量:3192
采纳率:33%
帮助的人:234万
展开全部
二阶导数<0向上凸
二阶导数>0向下凹!
看看书会更好一些啊~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式