5个回答
展开全部
假设x=a^(1/2)tan(t)
那么原式=∫(a+x^2)^(3/2)dx=∫(a*(sec(t))^2)^(3/2)*d(a^(1/2)tan(t))=∫a^(3/2)*(sec(t))^3*d(a^(1/2)tan(t))
=∫a^2*(sec(t))^5*dt
=∫a^2*dt/(cos(t))^5
=∫a^2*d(sint)/(cos(t))^6
=a^2*∫d(sint)/(1-(sin(t))^3
=a^2*∫d(sint)/((1-(sin(t))^2)^3
=a^2*∫d(sint)/((1-(sin(t))^3*(1+(sin(t))^3)
=a^2*∫d(sint)/((1-(sin(t))^3*(1+(sin(t))^3)
那么原式=∫(a+x^2)^(3/2)dx=∫(a*(sec(t))^2)^(3/2)*d(a^(1/2)tan(t))=∫a^(3/2)*(sec(t))^3*d(a^(1/2)tan(t))
=∫a^2*(sec(t))^5*dt
=∫a^2*dt/(cos(t))^5
=∫a^2*d(sint)/(cos(t))^6
=a^2*∫d(sint)/(1-(sin(t))^3
=a^2*∫d(sint)/((1-(sin(t))^2)^3
=a^2*∫d(sint)/((1-(sin(t))^3*(1+(sin(t))^3)
=a^2*∫d(sint)/((1-(sin(t))^3*(1+(sin(t))^3)
展开全部
少东西 无解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
adx-dx+ax
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询