已知函数f(x)的定义域为R,且f(a+b)=f(a)·f(b),当x>0时,f(x)>1,(1)求f(0) (2)证明f(x)是增函数
1个回答
展开全部
你好:
(1)由于f(a+b)=f(a)×f(b),则f(0+X)=f(0)×f(X)
当X>0时,有f(x)>1,所以f(0)=1
(2)f(a+b)=f(a)×f(b)则,f(2x)=f(x)×f(x),则对任意x,f(x)>0
又有f(x-x)=f(x)×f(-x)=1,当x>0时,f(x)>1,则f(-x)<1
设在R内有x1,x2,且x2>x1
f(x2)-f(x1)=f[(x2-x1)/2+(x2+x1)/2]-f[(x1-x2)/2+(x1+x2)/2]
=f[(x2-x1)/2]×f[(x2+x1)/2]-f[(x1-x2)/2]×f[(x1+x2)/2]
=f[(x2+x1)/2]{f[(x2-x1)/2]-f[(x1-x2)/2]}
由于(x2-x1)/2>0,(x1-x2)/2<0则
f[(x2-x1)/2]>1,f[(x1-x2)/2]<1
所以f(x2)-f(x1)>0,则函数f(x)为增函数
(1)由于f(a+b)=f(a)×f(b),则f(0+X)=f(0)×f(X)
当X>0时,有f(x)>1,所以f(0)=1
(2)f(a+b)=f(a)×f(b)则,f(2x)=f(x)×f(x),则对任意x,f(x)>0
又有f(x-x)=f(x)×f(-x)=1,当x>0时,f(x)>1,则f(-x)<1
设在R内有x1,x2,且x2>x1
f(x2)-f(x1)=f[(x2-x1)/2+(x2+x1)/2]-f[(x1-x2)/2+(x1+x2)/2]
=f[(x2-x1)/2]×f[(x2+x1)/2]-f[(x1-x2)/2]×f[(x1+x2)/2]
=f[(x2+x1)/2]{f[(x2-x1)/2]-f[(x1-x2)/2]}
由于(x2-x1)/2>0,(x1-x2)/2<0则
f[(x2-x1)/2]>1,f[(x1-x2)/2]<1
所以f(x2)-f(x1)>0,则函数f(x)为增函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询