利用根与系数的关系,求一个一元一次方程,使它的根分别是方程x^2+px+q=0的各根的①相反数 ②倒数 ③平方

要过程... 要过程 展开
tianyi2603
2011-08-14 · TA获得超过1024个赞
知道小有建树答主
回答量:208
采纳率:0%
帮助的人:228万
展开全部

设(x*x)+px+q=0的根为a,b
(1)新方程两根为-a,-b
则新方程为x^2-(-a-b)x+(-a)(-b)=0
x^2+(a+b)x+ab=0
又因为a+b=-p,ab=q
所以所求方程为:x^2-px+q=0
其实这里有一个规律,如果两个一元二次方程一次项系数互为相反数,其他都一样,那么这两个方程的根互为相反数
(2)
新方程两根为1/a,1/b
则新方程为x^2-(1/a+1/b)x+1/a*1/b=0
x^2-[(a+b)/ab]x+1/(ab)=0
又因为a+b=-p,ab=q
所以所求方程为:
x^2+p/q*x+1/q=0
(3)新方程两根为a^2,b^2
则新方程为x^2-(a^2+b^2)x+a^2b^2=0
x^2-[(a+b)^2-2ab]+(ab)^2=0
所求为x^2-(p^-2q)x+q^2=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式