六年级数学,10道简便计算题带答案谢谢哦∩_∩
展开全部
(1)2.64×1.7-2.64×0.7
=2.64×(1.7-0.7)
=2.64×1
=2.64
(2)31.5×1.07-3.15×0.7
=3.15×10.7-3.15×0.7
=3.15×(10.7-0.7)
=3.15×10
=31.5
(3)2.7×5.7-2.7+5.3×2.7
=2.7×(5.7-1+5.3)
=2.7×10
=27
(4)0.625÷0.125×0.8
=(0.625×0.8)×8÷(0.128×8)
=0.5×8÷1
=4
(5)18.6×6.1+3.9×18.6
=18.6×(6.1+3.9)
=18.6×10
=186
(6)1.3579+3.5791+5.7913+7.9135+9.1357
=(1+3+5+7+9)×1.1111
=25×1.1111
=27.7775
(7)52.5x2.9+5.45
=5.25x29+5.25+0.2
=5.25×(29+1)+0.2
=5.25×30+0.2
=157.5+0.3
=157.7
(8)0.92x15+0.08x15
=(0.92+0.08)×15
=1×15
=15
(9)0.72×1.25×2.5
=0.9×(0.8×1.25)×2.5
=0.9×1×2.5
=2.25
(10)400.6x7-2003x0.4
=200.3x14-200.3x4
=200.3×(14-4)
=200.3×10
=2003
=2.64×(1.7-0.7)
=2.64×1
=2.64
(2)31.5×1.07-3.15×0.7
=3.15×10.7-3.15×0.7
=3.15×(10.7-0.7)
=3.15×10
=31.5
(3)2.7×5.7-2.7+5.3×2.7
=2.7×(5.7-1+5.3)
=2.7×10
=27
(4)0.625÷0.125×0.8
=(0.625×0.8)×8÷(0.128×8)
=0.5×8÷1
=4
(5)18.6×6.1+3.9×18.6
=18.6×(6.1+3.9)
=18.6×10
=186
(6)1.3579+3.5791+5.7913+7.9135+9.1357
=(1+3+5+7+9)×1.1111
=25×1.1111
=27.7775
(7)52.5x2.9+5.45
=5.25x29+5.25+0.2
=5.25×(29+1)+0.2
=5.25×30+0.2
=157.5+0.3
=157.7
(8)0.92x15+0.08x15
=(0.92+0.08)×15
=1×15
=15
(9)0.72×1.25×2.5
=0.9×(0.8×1.25)×2.5
=0.9×1×2.5
=2.25
(10)400.6x7-2003x0.4
=200.3x14-200.3x4
=200.3×(14-4)
=200.3×10
=2003
追问
谢谢
展开全部
一、提取公因式
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:
0.92×1.41+0.92×8.59
= 0.92×(1.41+8.59)
二、借来借去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1—4
三、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
四、加法结合律
注意对加法结合律(a+b)+c=a+(b+c)
的运用,通过改变加数的位置来获得更简便的运算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
五、拆分法和乘法分配律结合
这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:
34×9.9
=34×(10-0.1)
案例再现:
57×101=?
六、利用基准数
在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
七、利用公式法(必背)
(1) 加法:
交换律,a+b=b+a,
结合律,(a+b)+c=a+(b+c).
(2) 减法运算性质:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c,
a-b-c=a-c-b,
(a+b)-c=a-c+b=b-c+a.
(3) 乘法(与加法类似):
交换律,a*b=b*a,
结合律,(a*b)*c=a*(b*c),
分配率,(a+b)xc=ac+bc,
(a-b)*c=ac-bc.
(4) 除法运算性质(与减法类似),a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷bxc,
a÷b÷c=a÷c÷b,
(a+b)÷c=a÷c+b÷c,
(a-b)÷c=a÷c-b÷c.
前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。
例1:
283+52+117+148
=(283+117)+(52+48)
(运用加法交换律和结合律)。
减号或除号后面加上或去掉括号,后面数值的运算符号要改变。
例2:
657-263-257
=657-257-263
=400-263
(运用减法性质,相当加法交换律。)
例3:
195-(95+24)
=195-95-24
=100-24
(运用减法性质)
例4;
150-(100-42)
=150-100+42
(同上)
例5:
(0.75+125)*8
=0.75*8+125*8=6+1000
. (运用乘法分配律))
例6:
( 125-0.25)*8
=125*8-0.25*8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 运用除法性质)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相当乘法分配律)
例9:
375÷(125÷0.5)
=375÷125*0.5=3*0.5=1.5.
(运用除法性质)
例10:
4.2÷(0。6*0.35)
=4.2÷0.6÷0.35
=7÷0.35=20.
(同上)
例11:
12*125*0.25*8
=(125*8)*(12*0.25)
=1000*3=3000.
(运用乘法交换律和结合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(运用加法性质和结合律)
例13:
(48*25*3)÷8
=48÷8*25*3
=6*25*3=450.
(运用除法性质, 相当加法性质)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
62×7.1+2.9,
=440.2+2.9,
=443.1;
4.2×0.25,
=(4+0.2)×0.25,
=4×0.25+0.2×0.25,
=1+0.05,
=1.05;
5.2×4.3+0.8×4.3,
=(5.2+0.8)×4.3,
=6×4.3,
=25.8.
8.5+1.5÷0.25×4,
=8.5+6×4,
=8.5+24,
=32.5.
0.25×0.8+2.5%
=0.2+2.5%,
=0.225;
32×125×2.5,
=4×8×125×2.5,
=8×125×(4×2.5),
=1000×10,
=10000;
94÷(6.84×8.5-31.46÷0.55),
=94÷(58.14-57.2),
=94÷0.94,
=100.
13÷0.4÷2.5,
=13÷(0.4×2.5),
=13÷1,
=13;
1.25×2.5×0.8,
=(1.25×0.8)×2.5,
=1×2.5,
=2.5;
1.5×101-1.5,
=1.5×(101-1),
=1.5×100,
=150;
4.8×101,
=4.8×100+4.8×1,
=480+4.8,
=484.8.
3.25×4.7-7.8,
=15.275-7.8,
=7.475;
0.57+0.43×0.24,
=0.57+0.1032,
=0.6732.
945÷5÷3,
=189÷3,
=63;
152×3÷2,
=456÷2,
=228;
43×12×6,
=516×6,
=3096.
200+25×33,
=200+825,
=1025;
(25+26)×48,
=51×48,
=2448.
576-(290+107),
=576-397,
=179;
649+124-556,
=773-556,
=217.
4.82-5.2÷0.8×0.6,
=4.82-6.5×0.6,
=4.82-3.9,
=0.92.
我这儿有哦,这么多,不知道你够不够
=440.2+2.9,
=443.1;
4.2×0.25,
=(4+0.2)×0.25,
=4×0.25+0.2×0.25,
=1+0.05,
=1.05;
5.2×4.3+0.8×4.3,
=(5.2+0.8)×4.3,
=6×4.3,
=25.8.
8.5+1.5÷0.25×4,
=8.5+6×4,
=8.5+24,
=32.5.
0.25×0.8+2.5%
=0.2+2.5%,
=0.225;
32×125×2.5,
=4×8×125×2.5,
=8×125×(4×2.5),
=1000×10,
=10000;
94÷(6.84×8.5-31.46÷0.55),
=94÷(58.14-57.2),
=94÷0.94,
=100.
13÷0.4÷2.5,
=13÷(0.4×2.5),
=13÷1,
=13;
1.25×2.5×0.8,
=(1.25×0.8)×2.5,
=1×2.5,
=2.5;
1.5×101-1.5,
=1.5×(101-1),
=1.5×100,
=150;
4.8×101,
=4.8×100+4.8×1,
=480+4.8,
=484.8.
3.25×4.7-7.8,
=15.275-7.8,
=7.475;
0.57+0.43×0.24,
=0.57+0.1032,
=0.6732.
945÷5÷3,
=189÷3,
=63;
152×3÷2,
=456÷2,
=228;
43×12×6,
=516×6,
=3096.
200+25×33,
=200+825,
=1025;
(25+26)×48,
=51×48,
=2448.
576-(290+107),
=576-397,
=179;
649+124-556,
=773-556,
=217.
4.82-5.2÷0.8×0.6,
=4.82-6.5×0.6,
=4.82-3.9,
=0.92.
我这儿有哦,这么多,不知道你够不够
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.3/7 × 49/9 - 4/3
2.8/9 × 15/36 + 1/27
3.12× 5/6 – 2/9 ×3
4.8× 5/4 + 1/4
5.6÷ 3/8 – 3/8 ÷6
6.4/7 × 5/9 + 3/7 × 5/9
7.5/2 -( 3/2 + 4/5 )
8.7/8 + ( 1/8 + 1/9 )
9.9 × 5/6 + 5/6
10.3/4 × 8/9 - 1/3
11.7 × 5/49 + 3/14
12.6 ×( 1/2 + 2/3 )
13.8 × 4/5 + 8 × 11/5
14.31 × 5/6 – 5/6
15.9/7 - ( 2/7 – 10/21 )
16.5/9 × 18 – 14 × 2/7
17.4/5 × 25/16 + 2/3 × 3/4
18.14 × 8/7 – 5/6 × 12/15
19.17/32 – 3/4 × 9/24
20.3 × 2/9 + 1/3
21.5/7 × 3/25 + 3/7
22.3/14 ×× 2/3 + 1/6
23.1/5 × 2/3 + 5/6
24.9/22 + 1/11 ÷ 1/2
25.5/3 × 11/5 + 4/3
26.45 × 2/3 + 1/3 × 15
27.7/19 + 12/19 × 5/6
28.1/4 + 3/4 ÷ 2/3
29.8/7 × 21/16 + 1/2
30.101 × 1/5 – 1/5 × 21
2.8/9 × 15/36 + 1/27
3.12× 5/6 – 2/9 ×3
4.8× 5/4 + 1/4
5.6÷ 3/8 – 3/8 ÷6
6.4/7 × 5/9 + 3/7 × 5/9
7.5/2 -( 3/2 + 4/5 )
8.7/8 + ( 1/8 + 1/9 )
9.9 × 5/6 + 5/6
10.3/4 × 8/9 - 1/3
11.7 × 5/49 + 3/14
12.6 ×( 1/2 + 2/3 )
13.8 × 4/5 + 8 × 11/5
14.31 × 5/6 – 5/6
15.9/7 - ( 2/7 – 10/21 )
16.5/9 × 18 – 14 × 2/7
17.4/5 × 25/16 + 2/3 × 3/4
18.14 × 8/7 – 5/6 × 12/15
19.17/32 – 3/4 × 9/24
20.3 × 2/9 + 1/3
21.5/7 × 3/25 + 3/7
22.3/14 ×× 2/3 + 1/6
23.1/5 × 2/3 + 5/6
24.9/22 + 1/11 ÷ 1/2
25.5/3 × 11/5 + 4/3
26.45 × 2/3 + 1/3 × 15
27.7/19 + 12/19 × 5/6
28.1/4 + 3/4 ÷ 2/3
29.8/7 × 21/16 + 1/2
30.101 × 1/5 – 1/5 × 21
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
152×3÷2
=456÷2
=228
43×12×6
=516×6
3096
200+25×33
=200+825
=1025
(25+26)×48
=51×48
=2448
576-(290+107)
=576-397
=179
脑子已短缺,只有这么多
=456÷2
=228
43×12×6
=516×6
3096
200+25×33
=200+825
=1025
(25+26)×48
=51×48
=2448
576-(290+107)
=576-397
=179
脑子已短缺,只有这么多
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询