
已知两个不共线的向量a,b的夹角为c,且|a|=3,|b|=1。若a+2b与a-4b垂直,求tanc
展开全部
a+2b与a-4b垂直 所以 这两个向量的积为0 即 (a+2b) *(a-4b)=0
得 a^2 - 2a*b - 8b^2=0
带入|a|=3,|b|=1,得9 - 2a*b -8=0
所以 a*b = 1/2
因为 a*b=|a|*|b|*cos c 所以,cos c=1/6 tan c= 根号35
得 a^2 - 2a*b - 8b^2=0
带入|a|=3,|b|=1,得9 - 2a*b -8=0
所以 a*b = 1/2
因为 a*b=|a|*|b|*cos c 所以,cos c=1/6 tan c= 根号35
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询