已知数列{an}的前n项和sn=n^2+3n+1,求a1+a3+a5=
展开全部
a1+a3+a5=S1+S3-S2+S5-S4
=5+19-11+41-29
=25
=5+19-11+41-29
=25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知数列{an}的前n项和sn=n^2+3n+1
a1=S1=1+3+1=5
n≥2时an=Sn-S(n-1)=n^2+3n+1-[(n-1)^2+3(n-1)+1]=2n-1+3=2n+2
所以a3=6+2=8
a5=10+2=12
故a1+a3+a5=5+8+12=25
这个是答案 呵呵 希望你不会的问老师 但百度也是一个大家庭 也可以哦 给我一次最佳吧 我一次都没 谢谢
a1=S1=1+3+1=5
n≥2时an=Sn-S(n-1)=n^2+3n+1-[(n-1)^2+3(n-1)+1]=2n-1+3=2n+2
所以a3=6+2=8
a5=10+2=12
故a1+a3+a5=5+8+12=25
这个是答案 呵呵 希望你不会的问老师 但百度也是一个大家庭 也可以哦 给我一次最佳吧 我一次都没 谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询