已知函数f(x)=2sin^2(派/4+x) - 根号3 cos2x (1)求函数的最小正周期和单调减区间
(2)若不等式|f(x)-m|小于2在x属于[派/4,派/2]上恒成立,求实数m的取值范围急要啊!!!答好的可以加分!!谢谢!!!...
(2)若不等式|f(x)-m|小于2在x属于[派/4,派/2]上恒成立,求实数m的取值范围
急要啊!!!答好的可以加分!!谢谢!!! 展开
急要啊!!!答好的可以加分!!谢谢!!! 展开
3个回答
展开全部
已知函数f(x)=2sin²(π/4+x) - (√3) cos2x (1)求函数的最小正周期和单调减区间
(2)若不等式|f(x)-m|<2在x属于[π/4,π/2]上恒成立,求实数m的取值范围
解:(1)f(x)=1-cos[2(π/4+x)]-(√3)cos2x=1-cos(π/2+2x)-(√3)cos2x=1+sin2x-(√3)cos2x
=1+2[(1/2)sin2x-(√3/2)cos2x]=1+2[sin2xcos(π/3)-cos2xsin(π/3)]=1+2sin(2x-π/3)
故最小正周期T=2π/2=π;单减区间:
由π/2+2kπ≦2x-π/3≦3π/2+2kπ,得5π/6+2kπ≦2x≦11π/6+2kπ,故单减区间为:
[5π/12+kπ,11π/12+kπ](k∈Z).
(2).︱f(x)-m︱=︱1+2sin(2x-π/3)-m︱<2,故得-2<1+2sin(2x-π/3)-m<2,
m-3<2sin(2x-π/3)<m+1;(m-3)/2<sin(2x-π/3)<(m+1)/2..........(1)
x=π/4时,sin(2x-π/3)=sin(π/2-π/3)=cos(π/3)=1/2;
x=5π/12时,sin(2x-π/3)=sin(5π/6-π/3)=sin(π/2)=1;
x=π/2时,sin(2x-π/3)=sin(π-π/3)=sin(π/3)=(√3)/2;
故当π/4≦x≦π/2时,1/2≦sin(2x-π/3)≦1;故要使不等式(1)在[π/4,π/2]内恒成立,必须:
(m-3)/2<1/2,即m<4,且(m+1)/2>1,即m>1;故得:1<m<4.
(2)若不等式|f(x)-m|<2在x属于[π/4,π/2]上恒成立,求实数m的取值范围
解:(1)f(x)=1-cos[2(π/4+x)]-(√3)cos2x=1-cos(π/2+2x)-(√3)cos2x=1+sin2x-(√3)cos2x
=1+2[(1/2)sin2x-(√3/2)cos2x]=1+2[sin2xcos(π/3)-cos2xsin(π/3)]=1+2sin(2x-π/3)
故最小正周期T=2π/2=π;单减区间:
由π/2+2kπ≦2x-π/3≦3π/2+2kπ,得5π/6+2kπ≦2x≦11π/6+2kπ,故单减区间为:
[5π/12+kπ,11π/12+kπ](k∈Z).
(2).︱f(x)-m︱=︱1+2sin(2x-π/3)-m︱<2,故得-2<1+2sin(2x-π/3)-m<2,
m-3<2sin(2x-π/3)<m+1;(m-3)/2<sin(2x-π/3)<(m+1)/2..........(1)
x=π/4时,sin(2x-π/3)=sin(π/2-π/3)=cos(π/3)=1/2;
x=5π/12时,sin(2x-π/3)=sin(5π/6-π/3)=sin(π/2)=1;
x=π/2时,sin(2x-π/3)=sin(π-π/3)=sin(π/3)=(√3)/2;
故当π/4≦x≦π/2时,1/2≦sin(2x-π/3)≦1;故要使不等式(1)在[π/4,π/2]内恒成立,必须:
(m-3)/2<1/2,即m<4,且(m+1)/2>1,即m>1;故得:1<m<4.
展开全部
f(x)=2sin^2(π/4+x) - √3 cos2x
=2(1-cos^2(π/4+x))-√3 cos2x
=1-(2cos^2(π/4+x)-1)-√3 cos2x
=1-cos(2x+π/2))-√3 cos2x
=1+sin2x-√3 cos2x
=1+2sin(2x-π/3)
所以函数的最小正周期T=π
单减区间为2kπ+π/2≤2x-π/3≤2kπ+3π/2
得到的区间为【kπ+5/12π,kπ+11/12π】k为整数。
|f(x)-m|=|1+2sin(2x-π/3)-m|<2
在区间[π/4,π/2]上,2sin(2x-π/3)的取值范围是[1,2]
|1+2sin(2x-π/3)-m|<2恒成立。2≤1+2sin(2x-π/3)≤3
则 -2+m<1+2sin(2x-π/3)<2+m
1 < m<4
=2(1-cos^2(π/4+x))-√3 cos2x
=1-(2cos^2(π/4+x)-1)-√3 cos2x
=1-cos(2x+π/2))-√3 cos2x
=1+sin2x-√3 cos2x
=1+2sin(2x-π/3)
所以函数的最小正周期T=π
单减区间为2kπ+π/2≤2x-π/3≤2kπ+3π/2
得到的区间为【kπ+5/12π,kπ+11/12π】k为整数。
|f(x)-m|=|1+2sin(2x-π/3)-m|<2
在区间[π/4,π/2]上,2sin(2x-π/3)的取值范围是[1,2]
|1+2sin(2x-π/3)-m|<2恒成立。2≤1+2sin(2x-π/3)≤3
则 -2+m<1+2sin(2x-π/3)<2+m
1 < m<4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
=1-cos2(派/4+x)- 根号3 cos2x
=1+sin2x- 根号3 cos2x
=1+2(1/2sin2x-根号3/2 cos2x)
=1+2sin(2x-派/6)
最小正周期 π
单调减区间
π/2<=2x-派/6<=π
π/3<=x<=7π/12
|f(x)-m|小于2
|1+2sin(2x-派/6)-m|<2
1+2sin(2x-派/6)∈【-1,3】
m∈(-1,1)
=1+sin2x- 根号3 cos2x
=1+2(1/2sin2x-根号3/2 cos2x)
=1+2sin(2x-派/6)
最小正周期 π
单调减区间
π/2<=2x-派/6<=π
π/3<=x<=7π/12
|f(x)-m|小于2
|1+2sin(2x-派/6)-m|<2
1+2sin(2x-派/6)∈【-1,3】
m∈(-1,1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询