设二次函数f(x)=-x²+2ax+1-a在区间[0,1]上的最大值为2,求实数a的值
展开全部
f(x)=-x^2+2ax+1-a的对称轴为x=-2a/-2=a,当a<0时函数在[0,1]上为减函数所以最大值为f(0)=1-a=2,a=-1
当x=a∈[0,1]时,最大值为(4ac-b^2)/4a=2,a=(1±√5)/2,因为a∈[0,1]所以a=(1±√5)/2全部不符合条件舍去。
当x=a>1时函数在[0,1]上为增函数,所以最大值为f(1)=-1+2a+1-a=2,a=2
综上所述a=-1或a=2.
当x=a∈[0,1]时,最大值为(4ac-b^2)/4a=2,a=(1±√5)/2,因为a∈[0,1]所以a=(1±√5)/2全部不符合条件舍去。
当x=a>1时函数在[0,1]上为增函数,所以最大值为f(1)=-1+2a+1-a=2,a=2
综上所述a=-1或a=2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询