设随机变量X和Y相互独立,X服从区间(0.2)的均匀分布,Y服从均值为1/2的指数分布 求P(Y《X) 5
由题设知[*]
因为随机变量X和Y相互独立,
所以二维随机变量(X,Y)的概率密度为[*]
所以P{X+Y>1)=1-P{X+Y≤1}
X和Y相互独立则有fx(x)*fy(y)=f(x,y)
Y服从均值为1/2的指数分布,即参数1/λ=1/2,λ=2
X Y相互独立,那么XY联合分布密度
f(x,y)=fx(x)*fy(y)fx(x)
=5e^(-5x) fy(y)
=1/2P(X>=Y)
=∫∫ f(x,y)dxdy
=∫(0,2)1/2∫(y,∞)5*e^(-5x) dx
=1/2∫(0,2) e^(-5y)dy
=1/2* (-1/5e^(-5y)) (0,2)
=1/10*(1-e^(-10))。
扩展资料
随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。
随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。
如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。