若正实数a,b满足4a+5b=6,求y=1/(a+2b)+4/(3a+3b)的最小值
展开全部
解:
4a+5b=6
(a+2b)+(3a+3b)=6
y=1/(a+2b)+4/(3a+3b)
=(1/6)[6/(a+2b)+ 24/(3a+3b)]
=(1/6)[[(a+2b)+(3a+3b)]/(a+2b) +4[(a+2b)+(3a+3b)]/(3a+3b)]
=(1/6)[1+ (3a+3b)/(a+2b) +4(a+2b)/(3a+3b) +4]
=(1/6)[(3a+3b)/(a+2b) +4(a+2b)/(3a+3b) +5]
由均值不等式得:
(3a+3b)/(a+2b) +4(a+2b)/(3a+3b)
≥2√[[(3a+3b)/(a+2b)][4(a+2b)/(3a+3b)]]
=4
y≥(1/6)(4+5)=3/2
y的最小值为3/2
4a+5b=6
(a+2b)+(3a+3b)=6
y=1/(a+2b)+4/(3a+3b)
=(1/6)[6/(a+2b)+ 24/(3a+3b)]
=(1/6)[[(a+2b)+(3a+3b)]/(a+2b) +4[(a+2b)+(3a+3b)]/(3a+3b)]
=(1/6)[1+ (3a+3b)/(a+2b) +4(a+2b)/(3a+3b) +4]
=(1/6)[(3a+3b)/(a+2b) +4(a+2b)/(3a+3b) +5]
由均值不等式得:
(3a+3b)/(a+2b) +4(a+2b)/(3a+3b)
≥2√[[(3a+3b)/(a+2b)][4(a+2b)/(3a+3b)]]
=4
y≥(1/6)(4+5)=3/2
y的最小值为3/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询