求星形线X^(2/3)+Y^(2/3)=a^(2/3) 绕y=x一周所形成的体积,谢谢大家
1个回答
展开全部
星形线X^(2/3)+Y^(2/3)=a^(2/3)
x=(acost)^3,y=(asint)^3,
V=2∫(π/2到0)y^2dx
=2*3*∫(0到π/2)a^6*(sint)^7*a^3*(cost)^2dt
=2*3*a^9∫(0到π/2)*(sint)^7*[1-(sint)^2]dt
=6a^9∫(0到π/2)*[(sint)^7-(sint)^9]dt
=6a^9*[6/7*4/5*2/3(1-8/9)]
=32/105*a^9.
x=(acost)^3,y=(asint)^3,
V=2∫(π/2到0)y^2dx
=2*3*∫(0到π/2)a^6*(sint)^7*a^3*(cost)^2dt
=2*3*a^9∫(0到π/2)*(sint)^7*[1-(sint)^2]dt
=6a^9∫(0到π/2)*[(sint)^7-(sint)^9]dt
=6a^9*[6/7*4/5*2/3(1-8/9)]
=32/105*a^9.
更多追问追答
追问
y^2dx不对,就算是旋转坐标系后的解法,参数方程应该有相应变化才能这么取微元,而且少乘了π
追答
太匆忙,少乘了π,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询