高一数学线性规划题,求高手速解
在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则y/(x-a)的最大值是答案是2/5我求出a=-3,往下就不会了...
在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z=x+ay取得最小值的最优解有无数个,则y/(x-a)的最大值是 答案是2/5
我求出a=-3,往下就不会了,求详解 展开
我求出a=-3,往下就不会了,求详解 展开
4个回答
展开全部
此题中,你的a球错了,取得最小值的最优解有无限个,那么说明,目标函数的斜率和三角形中任意一条直线的斜率相同
首先,转化一下目标函数:y=-(1/a)*x+z/a
然后,我们发现当目标函数斜率和直线ac斜率相等时,满足条件,z最小且有无限个解
所以,-(1/a)=(2-0)/(4-2)
所以,a=-1
y/(x-a) 即是 (y-0)/[x-(-1)] ,即可行域上的点到(-1,0)的最大距离是多少
明显可从图上看出 是c点离(-1,0)点距离最大
把c点带入得 2/[4-(-1)]=2/5
楼上的解法看成斜率也是一解
LZ你觉得哪种好用就用哪种吧
首先,转化一下目标函数:y=-(1/a)*x+z/a
然后,我们发现当目标函数斜率和直线ac斜率相等时,满足条件,z最小且有无限个解
所以,-(1/a)=(2-0)/(4-2)
所以,a=-1
y/(x-a) 即是 (y-0)/[x-(-1)] ,即可行域上的点到(-1,0)的最大距离是多少
明显可从图上看出 是c点离(-1,0)点距离最大
把c点带入得 2/[4-(-1)]=2/5
楼上的解法看成斜率也是一解
LZ你觉得哪种好用就用哪种吧
追问
哦,明白了
展开全部
你算错了,a=-3时,x-3y的最小值只有一个即(4,2)
所以其实应该以AC为参照,所以a=-1
那么求y/(x+1)的值其实就是点(-1,0)与阴影内一点连线的斜率
那么最大为(-1,0)与(4,2)的连线的斜率即2/5
所以其实应该以AC为参照,所以a=-1
那么求y/(x+1)的值其实就是点(-1,0)与阴影内一点连线的斜率
那么最大为(-1,0)与(4,2)的连线的斜率即2/5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y/(x-a)=y/(x+3)=(y-0)/(x-(-3))其实是求解过点(-3,0)的直线在可行域内的斜率的最大值
很明显当直线过C点时最大,即为2/(4+3)=2/7.
很明显当直线过C点时最大,即为2/(4+3)=2/7.
追问
我算的也是2/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y/(x-a)的几何意义要搞清楚,它表示可行域内的点与点(-3,0)的连线的斜率,该斜率的最大值显然是当动点在C点时取得,所以,最大斜率为:(2-0)/(4-(-3))=2/7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询