在三棱柱ABC-A1B1C1中,D,D1分别是BC,B1C1的中点。求证:平面A1BD1//平面AC1D
2个回答
展开全部
已知斜三棱柱ABC-A1B1C1中,A1C1=B1C1=2,D、D1分别是AB、A1B1的中点,平面A1ABB1⊥平面A1B1C1,异面直线AB1和C1B互相垂直.
(1)求证:AB1⊥C1D1;
(2)求证:AB1⊥面A1CD
最佳答案 证明:(1)Because(B):A1C1=B1C1=2 and D1是A1B1的中点
So(s): C1D1⊥A1B1
又B:A1ABB1⊥平面A1B1C1
S:C1D1⊥A1ABB1
又B:AB1包含于A1ABB1
S:AB1⊥C1D1
(2)连接BD1
B:C1D1⊥A1ABB1故C1D1⊥BD1.........\1\
且C1D1⊥AB1.....................\2\
且C1D1//CD
S:CD⊥A1ABB1
S:CD⊥AB1..........................\3\
又B:异面直线AB1和C1B互相垂直(即AB1⊥C1B)....\4\
由\2\和\4\知AB1⊥平面BC1D1
S:AB1⊥BD1 又因为A1D//BD1
S:AB1⊥A1D..................................\5\
由\3\和\5\即得AB1⊥面A1CD
(1)求证:AB1⊥C1D1;
(2)求证:AB1⊥面A1CD
最佳答案 证明:(1)Because(B):A1C1=B1C1=2 and D1是A1B1的中点
So(s): C1D1⊥A1B1
又B:A1ABB1⊥平面A1B1C1
S:C1D1⊥A1ABB1
又B:AB1包含于A1ABB1
S:AB1⊥C1D1
(2)连接BD1
B:C1D1⊥A1ABB1故C1D1⊥BD1.........\1\
且C1D1⊥AB1.....................\2\
且C1D1//CD
S:CD⊥A1ABB1
S:CD⊥AB1..........................\3\
又B:异面直线AB1和C1B互相垂直(即AB1⊥C1B)....\4\
由\2\和\4\知AB1⊥平面BC1D1
S:AB1⊥BD1 又因为A1D//BD1
S:AB1⊥A1D..................................\5\
由\3\和\5\即得AB1⊥面A1CD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询