1个回答
展开全部
应该是671个
因为要最多,所以从1开始取,首先可以肯定两个数间隔为1或者2都不可以,这个题的答案就是间隔为3取数,1 4 7 ......2011 一共671个数。
下面进行证明。
因为取得数都是除以3余1,所以任意两个数 3a + 1,3b+1 ,那么两个数的和3(a+b) + 2,肯定不能被3整除。
在看两个数的差 3(a - b)肯定是3的倍数,如果想要和可以整除差,那么和必须可以整除3,上面已经证明任意两个数的和不能整除3,所以任意两个数的和肯定不能整除两个数的差
所以这题的答案是每隔3取一个数,当然取的数不能整除3。
也可以2 5 8......2009 这样比 1 4 7 的少,所以最多的取法是 1 4 7 ... 共671个
因为要最多,所以从1开始取,首先可以肯定两个数间隔为1或者2都不可以,这个题的答案就是间隔为3取数,1 4 7 ......2011 一共671个数。
下面进行证明。
因为取得数都是除以3余1,所以任意两个数 3a + 1,3b+1 ,那么两个数的和3(a+b) + 2,肯定不能被3整除。
在看两个数的差 3(a - b)肯定是3的倍数,如果想要和可以整除差,那么和必须可以整除3,上面已经证明任意两个数的和不能整除3,所以任意两个数的和肯定不能整除两个数的差
所以这题的答案是每隔3取一个数,当然取的数不能整除3。
也可以2 5 8......2009 这样比 1 4 7 的少,所以最多的取法是 1 4 7 ... 共671个
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询