已知正项数列{an},{bn}满足:对任何正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,
且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通用公式设Sn=1/(a1)+1/(a2)+1/(a3)+....1/(an)如果对任何正...
且a1=10,a2=15
求证:数列(根号Bn)是等差数列
求数列{an},{bn}通用公式
设Sn=1/(a1)+1/(a2)+1/(a3)+....1/(an)如果对任何正整数n,不等式2aSn<2-(bn/an)横成立。 求实数a的范围。 展开
求证:数列(根号Bn)是等差数列
求数列{an},{bn}通用公式
设Sn=1/(a1)+1/(a2)+1/(a3)+....1/(an)如果对任何正整数n,不等式2aSn<2-(bn/an)横成立。 求实数a的范围。 展开
2个回答
展开全部
1。令Cn=根号Bn 则由bn,a(n+1),b(n+1)成等比数列知,AN+1=CN乘以CN+1
由an,bn,a(n+1)成等差数列,2CN平方=AN + AN+1 = CN-1乘以CN + CN乘以CN+1
即2CN=CN-1 + CN+1
亦即 2根号BN=根号BN-1 + 根号BN+1
证毕
2。根据第一问知,数列CN 为等差数列
易求 C1=5除以根号2 C2=3乘以根号2 所以公差为 根号2除以2(即根号2分之一)
所以数列CN通项公式为 CN=5除以根号2 + (N-1)乘以根号2分之一
由bn,a(n+1),b(n+1)成等比数列,AN=根号BN 乘以 根号bn+1 = cn 乘以 cn+1 = (N+4)(N+5)除以2
由an,bn,a(n+1)成等差数列,又已求出AN,易得BN=(N+5)平方除以2
3。
AN=(N+4)(N+5)除以2
所以1除以AN = 2( 1/(n+4)-1/(N+5) )
所以SN = 2 ( 1/5 - 1/ (n+5) )
最后一问化简为
A < (N+3)(N+5) / 4N(N+4) 恒成立
即求 (N+3)(N+5) / 4N(N+4) 最小值
以下略。。(相当于求函数 F(N)=(N+3)(N+5) / 4N(N+4)的最值 )
由an,bn,a(n+1)成等差数列,2CN平方=AN + AN+1 = CN-1乘以CN + CN乘以CN+1
即2CN=CN-1 + CN+1
亦即 2根号BN=根号BN-1 + 根号BN+1
证毕
2。根据第一问知,数列CN 为等差数列
易求 C1=5除以根号2 C2=3乘以根号2 所以公差为 根号2除以2(即根号2分之一)
所以数列CN通项公式为 CN=5除以根号2 + (N-1)乘以根号2分之一
由bn,a(n+1),b(n+1)成等比数列,AN=根号BN 乘以 根号bn+1 = cn 乘以 cn+1 = (N+4)(N+5)除以2
由an,bn,a(n+1)成等差数列,又已求出AN,易得BN=(N+5)平方除以2
3。
AN=(N+4)(N+5)除以2
所以1除以AN = 2( 1/(n+4)-1/(N+5) )
所以SN = 2 ( 1/5 - 1/ (n+5) )
最后一问化简为
A < (N+3)(N+5) / 4N(N+4) 恒成立
即求 (N+3)(N+5) / 4N(N+4) 最小值
以下略。。(相当于求函数 F(N)=(N+3)(N+5) / 4N(N+4)的最值 )
追问
AN=根号BN 乘以 根号bn+1 = cn 乘以 cn+1 = (N+4)(N+5)除以2那么当N=1的时候,A1=15但题目说A1=10与事实不符。
追答
不小心弄错了~
An=(n+3)(n+4)\2 Bn=(n+4)的平方/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询