如何运用大数据

 我来答
好口子
2018-06-26 · 好口子,手把手教你维护好你的征信!
好口子
采纳数:29399 获赞数:66629

向TA提问 私信TA
展开全部
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统

学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。

据处理: 自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理
解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

据挖掘: 分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。

大数据的处理
1. 大数据处理之一:采集

数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时
有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些
海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析

计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘

前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于

统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
美林数据技术股份有限公司
2019-06-26 广告
美林数据Tempo大数据分析平台,它是一款集数据接入、数据处理、数据挖掘、数据可视化、数据应用于一体的软件产品。它秉持“智能、互动、增值”的设计理念,面向企业级用户提供自助式数据探索与分析能力,为企业提供从BI到AI的一体化数据分析与应用解... 点击进入详情页
本回答由美林数据技术股份有限公司提供
四川新华酸萌
2019-07-19 · TA获得超过798个赞
知道答主
回答量:500
采纳率:0%
帮助的人:17.1万
展开全部
首先是需要有数据,然后基于数据的特征做分析处理。
个人的问题可能是没有大数据源,以及没有财力购买大数据分析工具。
譬如有大量的股票的价格信息可以做股票分析和预测,如果有房价数据(当然是一直在涨。。。),可以看看一年中合适的出手时机。
总之,一要看需求,而要看数据,三要结合工具。工具推荐免费的Hadoop等大数据工具,配合另外一些开源分析软件,但对个人挑战大。如果中小型企业,可以使用永洪科技的大数据BI。
以后可能会有大数据在线分析平台,个人可能会有更多应用可用。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
喵喵喵喵喵咪c7
2019-07-02 · TA获得超过4024个赞
知道小有建树答主
回答量:2277
采纳率:100%
帮助的人:71.5万
展开全部
身边很多IT人对于大数据的新技术、新趋势都是兴趣满满,为程序员又迎来了一场春天,投身大数据领域,锻造新技能。今天就与你共同分享三个精准应用大数据的秘诀,助力你的业绩直线上升。

秘诀一:目标要明确
一个公司拥有再多的数据,也不能代表它就一定会获得商业上的成功。只有真正懂得如何利用大数据,了解到公司利用大数据可以达到什么目标,公司才有可能真正成功。在公司在发展过程中往往也会面临诸多选择,也只有目标设定明确了,才能够缩小选择范围聚焦精力去发展。企业应时刻保持头脑清醒,朝着自己定好的目标前进,才有助于公司进行持续长久的良好运作。
其实有时候,利用太复杂先进的数据分析工具往往也会带来很多问题,不过如果我们能够依靠分析大量的数据来得到的结果,那就不用怀疑了,你就干吧,至少方向肯定是对的。

秘诀二:要谨慎对待数据
有时,企业是没有能力去获取数据的,也就没法用数据去解决问题。就算公司获得了一些数据,他们往往也不清楚这些数据能否解决他们的问题。
在这一点上,建议是,一个数据是否有效,是否能帮助公司解决问题,建议询问数据小组的意见。
有时候,重要的数据可能会被忽略。比如,当为某家企业搭建交通情况模型时,大家普遍认为天气是预测交通状况的重要因素。后来研究结果却显示,影响那个地区交通状况的是当地学校的放学时间。当学生们放学时,堵车情况尤为严重。
负责人说,从一开始的假设来看,我们并没有预见到会得出这样的结论,所以,应谨慎认真对待数据,数据会真实客观地告诉你想要的答案。有时,数据能告诉你的会让你大吃一惊。
秘诀三:要避免得出错误的结论
由于人为主观因素和不相关数据的干扰,有时候得出的结论往往是错误的。
“不要让不相干的数据影响到整个结果,有相当一部分的数据并不重要,这些不相关的‘树’往往并不能代表整个‘森林’。如果使用了错误的数据,得出的结论往往也是错的。”
数据选择上的错误会影响人们解决问题的过程,也会影响人们如何看待这些数据和结果。错误的数据选择可能影响到公司做出相关决策。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
千锋教育
2017-01-11 · 做真实的自己 用良心做教育
千锋教育
千锋教育专注HTML5大前端、JavaEE、Python、人工智能、UI&UE、云计算、全栈软件测试、大数据、物联网+嵌入式、Unity游戏开发、网络安全、互联网营销、Go语言等培训教育。
向TA提问
展开全部
大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。
总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我们面前。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式