求解第6题。谢谢
1个回答
展开全部
6.
对数有意义,真数>0
x+1>0,x-1>0,解得x>1
|loga(x+1)|>|loga(x-1)|
[loga(x+1)]²>[loga(x-1)]²
[loga(x+1)]²-[loga(x-1)]²>0
[loga(x+1)+loga(x-1)][loga(x+1)-loga(x-1)]>0
loga[(x+1)(x-1)] ·loga[(x+1)/(x-1)]>0
loga(x²-1) ·loga[1+ 2/(x-1)]>0
要不等式成立,loga[1+ 2/(x-1)]与loga(x²-1)同号
1+ 2/(x-1)恒>1,因此x²-1>1,x²>2,x>√2
不等式的解集为(√2,+∞)
对数有意义,真数>0
x+1>0,x-1>0,解得x>1
|loga(x+1)|>|loga(x-1)|
[loga(x+1)]²>[loga(x-1)]²
[loga(x+1)]²-[loga(x-1)]²>0
[loga(x+1)+loga(x-1)][loga(x+1)-loga(x-1)]>0
loga[(x+1)(x-1)] ·loga[(x+1)/(x-1)]>0
loga(x²-1) ·loga[1+ 2/(x-1)]>0
要不等式成立,loga[1+ 2/(x-1)]与loga(x²-1)同号
1+ 2/(x-1)恒>1,因此x²-1>1,x²>2,x>√2
不等式的解集为(√2,+∞)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询