函数连续性
1个回答
展开全部
f(x)= [g(x)-e^(-x)]/x ; x≠0
= 0 ; x=0
(1)
lim(x->0) f(x)
= lim(x->0)[g(x)-e^(-x)]/x (0/0)
= lim(x->0)[g'(x)+e^(-x)]
=g'(0) +1
=0
=f(0)
x=0, f(x) 是连续
(2)
f'(0)
=lim(h->0) [ f(h) -f(0) ]/h
=lim(h->0) [g(h)-e^(-h)]/h^2 (0/0)
=lim(h->0) [g'(h)+e^(-h)]/(2h) (0/0)
=lim(h->0) [g''(h)-e^(-h)]/2
=(1/2) [g''(0) -1]
=> (-∞, ∞) f'(x) 是连续
= 0 ; x=0
(1)
lim(x->0) f(x)
= lim(x->0)[g(x)-e^(-x)]/x (0/0)
= lim(x->0)[g'(x)+e^(-x)]
=g'(0) +1
=0
=f(0)
x=0, f(x) 是连续
(2)
f'(0)
=lim(h->0) [ f(h) -f(0) ]/h
=lim(h->0) [g(h)-e^(-h)]/h^2 (0/0)
=lim(h->0) [g'(h)+e^(-h)]/(2h) (0/0)
=lim(h->0) [g''(h)-e^(-h)]/2
=(1/2) [g''(0) -1]
=> (-∞, ∞) f'(x) 是连续
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询