1-余弦a的4次方-正弦a的4次方除以1-余弦a的6次方-正弦a的6次方 求值
展开全部
[1-(cosa)^4-(sina)^4]/[1-(cosa)^6-(sina)^6]
=[1-(cos^4a+sin^4a+2cos^2asin^2a)+2cos^2asin^2a]/[1-((cos^2a)^3+(sin^2a)^3)]
=[1-(cos^2a+sin^2a)^2+2cos^2asin^2a]/[1-(cos^2a+sin^2a)(cos^4a+sin^4a-cos^2asin^2a)]
=(2cos^2asin^2a)/[1-(cos^4a+sin^4a-cos^2asin^2a)]
=2cos^2asin^2a/[1-(cos^2a+sin^2a)^2+3cos^2asin^2a]
=2cos^2asin^2a /3cos^2asin^2a
=2/3
=[1-(cos^4a+sin^4a+2cos^2asin^2a)+2cos^2asin^2a]/[1-((cos^2a)^3+(sin^2a)^3)]
=[1-(cos^2a+sin^2a)^2+2cos^2asin^2a]/[1-(cos^2a+sin^2a)(cos^4a+sin^4a-cos^2asin^2a)]
=(2cos^2asin^2a)/[1-(cos^4a+sin^4a-cos^2asin^2a)]
=2cos^2asin^2a/[1-(cos^2a+sin^2a)^2+3cos^2asin^2a]
=2cos^2asin^2a /3cos^2asin^2a
=2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询