已知命题p所有x属于【1,2】,x^2-a》0,命题q存在x属于R,x^2+2ax+2-a=0,若两命题都真,求a的范围?

宇文仙
2011-08-18 · 知道合伙人教育行家
宇文仙
知道合伙人教育行家
采纳数:20989 获赞数:115026
一个数学爱好者。

向TA提问 私信TA
展开全部
两命题都真
命题p为真
x^2-a≥0在[1,2]上恒成立
故a≤{x^2}min=1(即a≤x^2的最小值)
即a≤1

命题q为真
存在x属于R,x^2+2ax+2-a=0
那么Δ=(2a)^2-4(2-a)=4a^2+4a-8≥0
故a≤-2或a≥1

两者取交集得a≤-2或a=1
即a的范围是{a|a≤-2或a=1}

如果不懂,请Hi我,祝学习愉快!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式