在三角形ABC中,角BAC=角BCA=44度,M为三角形ABC内一点,使得角MCA=30度,角MAC=16度。求角BMC的度数。

可不可以用bm为边作正三角形?求解,急!答出后有悬赏!... 可不可以用bm为边作正三角形?求解,急!答出后有悬赏! 展开
殇彡蕝朢
2013-12-10
知道答主
回答量:2
采纳率:0%
帮助的人:2.5万
展开全部
解:
过B作BD⊥AC,交AC于D,延长CM交BD于E,连接AE
∵在△ABC中∠BAC=∠BCA=44°
∴△ABC为等腰三角形,∠ABC=92°为顶角
∵BD⊥AC
∴BD垂直平分AC ∠CBD=∠DBA=46°
∵E为BD上的点
∴EC=EA ∠ECA=∠EAC=30°
∵∠ECA=30° ∠MAC=16° ∠BAC=44°
∠EAC=∠EAM+∠MAC=30°∠BAC=∠BAE+∠EAD
∴∠EAM=∠EAC-∠MAC=30°-16°=14° ∠BAE=∠BAC-∠EAC=44°-30°=14°
∴∠BAE=∠EAM=14°
∵∠EMA=∠ECA+∠MAC=30°+16°=46°
∴∠EMA=∠EBA=46°
∴∠MEA=180°-∠EMA-∠EAM=120°
∠BEA=180°-∠EBA-∠EAB=120°
∴△BEA≌△MEA(ASA)
∴BA=MA
∴△ABM为等腰三角形,∠BAM为顶角,且∠BAM=∠BAE+∠EAM=14°+14°=28°
∴∠BMA=76°
∵∠CMA=180°-∠MCA-∠MAC=180°-30°-16°=134°
∴∠BMC=360°-∠CMA-∠BMA=360°-134°-76°=150°
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式