在极坐标系中,求过点(2,3分之派)倾斜角为4分之派的直线的极坐标方程
2个回答
展开全部
设已知点为A(2,π/3),则OA=2。
方法一,用极坐标
设所求直线与极轴的反向延长线交于点B,在△AOB中,∠B=π/4,∠AOX=π/3,所以∠A=π/12,
在所求直线上任取一点M,OM=ρ,∠MOX=θ,则
∠AOM=∠MOX-∠AOX=θ-π/3,∠AMO=π-∠A-∠AOM=π-π/12-(θ-π/3)=5π/4-θ,
在△AOM中,由正弦定理有OA/sin∠AMO=OM/sin∠A,即
2/sin(5π/4-θ)=ρ/sin(π/12),
化简即得所求直线的极坐标方程:ρsin(θ-π/4)=(√6-√2)/2,
也可写为ρsinθ-ρcosθ=√3-1;
方法二:转化为直角坐标
首先将已知点A(2,π/3)转化为直角坐标得A(2cos(π/3),2sin(π/3)),即A(1,√3),
而所求直线的倾斜角为π/4,所以其斜率为tan(π/4)=1,由点斜式可写出其直线方程为
y-√3=1*(x-1),
再将x=ρcosθ,y=ρsinθ代入即得所求直线的极坐标方程ρsinθ-ρcosθ=√3-1。
方法一,用极坐标
设所求直线与极轴的反向延长线交于点B,在△AOB中,∠B=π/4,∠AOX=π/3,所以∠A=π/12,
在所求直线上任取一点M,OM=ρ,∠MOX=θ,则
∠AOM=∠MOX-∠AOX=θ-π/3,∠AMO=π-∠A-∠AOM=π-π/12-(θ-π/3)=5π/4-θ,
在△AOM中,由正弦定理有OA/sin∠AMO=OM/sin∠A,即
2/sin(5π/4-θ)=ρ/sin(π/12),
化简即得所求直线的极坐标方程:ρsin(θ-π/4)=(√6-√2)/2,
也可写为ρsinθ-ρcosθ=√3-1;
方法二:转化为直角坐标
首先将已知点A(2,π/3)转化为直角坐标得A(2cos(π/3),2sin(π/3)),即A(1,√3),
而所求直线的倾斜角为π/4,所以其斜率为tan(π/4)=1,由点斜式可写出其直线方程为
y-√3=1*(x-1),
再将x=ρcosθ,y=ρsinθ代入即得所求直线的极坐标方程ρsinθ-ρcosθ=√3-1。
上海斌瑞
2024-02-20 广告
2024-02-20 广告
半年内不要再照就没有问题,因为你已经被辐射了,但是十分钟不是特别长的时间,相当与做两三次透视吧,没有关系,不要紧张,医院大夫即使有防护措施也要不可避免的被照射呢...
点击进入详情页
本回答由上海斌瑞提供
展开全部
首先有:x=ρ*cosθ,y=ρ*sinθ
所以,化为直角坐标来做:
原题为:求过点(1,√3)斜率为:tanπ/4=1的直线方程
所以:直线方程:y-√3=1*(x-1),即:y=x-1+√3
在化为极坐标:ρ*sinθ=ρ*cosθ-1+√3
合并:√2*ρ*sin(θ-π/4)=√3-1
化简:ρ*sin(θ-π/4)=(√3-1)/√2
即:ρ*sin(θ-π/4)=(√6-√2)/2
有不懂欢迎追问
所以,化为直角坐标来做:
原题为:求过点(1,√3)斜率为:tanπ/4=1的直线方程
所以:直线方程:y-√3=1*(x-1),即:y=x-1+√3
在化为极坐标:ρ*sinθ=ρ*cosθ-1+√3
合并:√2*ρ*sin(θ-π/4)=√3-1
化简:ρ*sin(θ-π/4)=(√3-1)/√2
即:ρ*sin(θ-π/4)=(√6-√2)/2
有不懂欢迎追问
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询