用洛必达法则求[1+(a/x)]^x的值,x趋向于无穷

 我来答
还没想好敌A3
2016-11-27 · TA获得超过3494个赞
知道大有可为答主
回答量:3019
采纳率:81%
帮助的人:552万
展开全部
y=(1+a/x)^x
lny=xln(1+a/x)=[ln(1+a/x)]/(1/x)
x→∞
所以这是0/0型,可以用洛必达法则
分子求导=[1/(1+a/x)]*(1+a/x)'=[1/(1+a/x)]*(-a/x^2)
分母求导=-1/x^2
所以=a/(1+a/x)=ax/(a+x)
现在是∞/∞型,还可以用洛必达法则
=a/1
=a
所以lny的极限=a
所以y的极限等于e^a
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式